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Abstract—Large Language Models (LLMs) showcase impres-
sive capabilities but encounter challenges like hallucination,
outdated knowledge, and non-transparent, untraceable reasoning
processes. Retrieval-Augmented Generation (RAG) has emerged
as a promising solution by incorporating knowledge from external
databases. This enhances the accuracy and credibility of the
generation, particularly for knowledge-intensive tasks, and allows
for continuous knowledge updates and integration of domain-
specific information. RAG synergistically merges LLMs’ intrin-
sic knowledge with the vast, dynamic repositories of external
databases. This comprehensive review paper offers a detailed
examination of the progression of RAG paradigms, encompassing
the Naive RAG, the Advanced RAG, and the Modular RAG.
It meticulously scrutinizes the tripartite foundation of RAG
frameworks, which includes the retrieval, the generation and the
augmentation techniques. The paper highlights the state-of-the-
art technologies embedded in each of these critical components,
providing a profound understanding of the advancements in RAG
systems. Furthermore, this paper introduces up-to-date evalua-
tion framework and benchmark. At the end, this article delineates
the challenges currently faced and points out prospective avenues
for research and development

Index Terms—Large language model, retrieval-augmented gen-
eration, natural language processing, information retrieval

I. INTRODUCTION

ARGE language models (LLMs) have achieved remark-
able success, though they still face significant limitations,
especially in domain-specific or knowledge-intensive tasks [[1]],
notably producing “hallucinations” [2]] when handling queries
beyond their training data or requiring current information. To
overcome challenges, Retrieval-Augmented Generation (RAG)
enhances LLMs by retrieving relevant document chunks from
external knowledge base through semantic similarity calcu-
lation. By referencing external knowledge, RAG effectively
reduces the problem of generating factually incorrect content.
Its integration into LLMs has resulted in widespread adoption,
establishing RAG as a key technology in advancing chatbots
and enhancing the suitability of LLMs for real-world applica-
tions.
RAG technology has rapidly developed in recent years, and
the technology tree summarizing related research is shown
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in Figure [I] The development trajectory of RAG in the era
of large models exhibits several distinct stage characteristics.
Initially, RAG’s inception coincided with the rise of the
Transformer architecture, focusing on enhancing language
models by incorporating additional knowledge through Pre-
Training Models (PTM). This early stage was characterized
by foundational work aimed at refining pre-training techniques
[3]-[5].The subsequent arrival of ChatGPT [6] marked a
pivotal moment, with LLM demonstrating powerful in context
learning (ICL) capabilities. RAG research shifted towards
providing better information for LLMs to answer more com-
plex and knowledge-intensive tasks during the inference stage,
leading to rapid development in RAG studies. As research
progressed, the enhancement of RAG was no longer limited
to the inference stage but began to incorporate more with LLM
fine-tuning techniques.

The burgeoning field of RAG has experienced swift growth,
yet it has not been accompanied by a systematic synthesis that
could clarify its broader trajectory. This survey endeavors to
fill this gap by mapping out the RAG process and charting
its evolution and anticipated future paths, with a focus on the
integration of RAG within LLMs. This paper considers both
technical paradigms and research methods, summarizing three
main research paradigms from over 100 RAG studies, and
analyzing key technologies in the core stages of “Retrieval,”
“Generation,” and “Augmentation.” On the other hand, current
research tends to focus more on methods, lacking analysis and
summarization of how to evaluate RAG. This paper compre-
hensively reviews the downstream tasks, datasets, benchmarks,
and evaluation methods applicable to RAG. Overall, this
paper sets out to meticulously compile and categorize the
foundational technical concepts, historical progression, and
the spectrum of RAG methodologies and applications that
have emerged post-LLMs. It is designed to equip readers and
professionals with a detailed and structured understanding of
both large models and RAG. It aims to illuminate the evolution
of retrieval augmentation techniques, assess the strengths and
weaknesses of various approaches in their respective contexts,
and speculate on upcoming trends and innovations.

Our contributions are as follows:

o In this survey, we present a thorough and systematic

review of the state-of-the-art RAG methods, delineating
its evolution through paradigms including naive RAG,
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Fig. 1. Technology tree of RAG research. The stages of involving RAG mainly include pre-training, fine-tuning, and inference. With the emergence of LLMs,
research on RAG initially focused on leveraging the powerful in context learning abilities of LLMs, primarily concentrating on the inference stage. Subsequent
research has delved deeper, gradually integrating more with the fine-tuning of LLMs. Researchers have also been exploring ways to enhance language models

in the pre-training stage through retrieval-augmented techniques.

advanced RAG, and modular RAG. This review contex-
tualizes the broader scope of RAG research within the
landscape of LLMs.

« We identify and discuss the central technologies integral
to the RAG process, specifically focusing on the aspects
of “Retrieval”, “Generation” and “Augmentation”, and
delve into their synergies, elucidating how these com-
ponents intricately collaborate to form a cohesive and
effective RAG framework.

o We have summarized the current assessment methods of
RAG, covering 26 tasks, nearly 50 datasets, outlining
the evaluation objectives and metrics, as well as the
current evaluation benchmarks and tools. Additionally,
we anticipate future directions for RAG, emphasizing
potential enhancements to tackle current challenges.

The paper unfolds as follows: Section [M] introduces the
main concept and current paradigms of RAG. The following
three sections explore core components— ‘Retrieval”, “Gen-
eration” and “Augmentation”, respectively. Section [ITI] focuses
on optimization methods in retrieval,including indexing, query
and embedding optimization. Section [[V]concentrates on post-
retrieval process and LLM fine-tuning in generation. Section[V]
analyzes the three augmentation processes. Section [VI| focuses
on RAG’s downstream tasks and evaluation system. Sec-
tion [VII] mainly discusses the challenges that RAG currently

faces and its future development directions. At last, the paper
concludes in Section

II. OVERVIEW OF RAG

A typical application of RAG is illustrated in Figure [
Here, a user poses a question to ChatGPT about a recent,
widely discussed news. Given ChatGPT’s reliance on pre-
training data, it initially lacks the capacity to provide up-
dates on recent developments. RAG bridges this information
gap by sourcing and incorporating knowledge from external
databases. In this case, it gathers relevant news articles related
to the user’s query. These articles, combined with the original
question, form a comprehensive prompt that empowers LLMs
to generate a well-informed answer.

The RAG research paradigm is continuously evolving, and
we categorize it into three stages: Naive RAG, Advanced
RAG, and Modular RAG, as showed in Figure [3] Despite
RAG method are cost-effective and surpass the performance
of the native LLM, they also exhibit several limitations.
The development of Advanced RAG and Modular RAG is
a response to these specific shortcomings in Naive RAG.

A. Naive RAG

The Naive RAG research paradigm represents the earli-
est methodology, which gained prominence shortly after the
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Fig. 2. A representative instance of the RAG process applied to question answering. It mainly consists of 3 steps. 1) Indexing. Documents are split into chunks,
encoded into vectors, and stored in a vector database. 2) Retrieval. Retrieve the Top k chunks most relevant to the question based on semantic similarity. 3)
Generation. Input the original question and the retrieved chunks together into LLM to generate the final answer.

widespread adoption of ChatGPT. The Naive RAG follows
a traditional process that includes indexing, retrieval, and
generation, which is also characterized as a “Retrieve-Read”
framework [/7].

Indexing starts with the cleaning and extraction of raw data
in diverse formats like PDF, HTML, Word, and Markdown,
which is then converted into a uniform plain text format. To
accommodate the context limitations of language models, text
is segmented into smaller, digestible chunks. Chunks are then
encoded into vector representations using an embedding model
and stored in vector database. This step is crucial for enabling
efficient similarity searches in the subsequent retrieval phase.

Retrieval. Upon receipt of a user query, the RAG system
employs the same encoding model utilized during the indexing
phase to transform the query into a vector representation.
It then computes the similarity scores between the query
vector and the vector of chunks within the indexed corpus.
The system prioritizes and retrieves the top K chunks that
demonstrate the greatest similarity to the query. These chunks
are subsequently used as the expanded context in prompt.

Generation. The posed query and selected documents are
synthesized into a coherent prompt to which a large language
model is tasked with formulating a response. The model’s
approach to answering may vary depending on task-specific
criteria, allowing it to either draw upon its inherent parametric
knowledge or restrict its responses to the information con-
tained within the provided documents. In cases of ongoing
dialogues, any existing conversational history can be integrated
into the prompt, enabling the model to engage in multi-turn
dialogue interactions effectively.

However, Naive RAG encounters notable drawbacks:

Retrieval Challenges. The retrieval phase often struggles
with precision and recall, leading to the selection of misaligned
or irrelevant chunks, and the missing of crucial information.

Generation Difficulties. In generating responses, the model
may face the issue of hallucination, where it produces con-
tent not supported by the retrieved context. This phase can
also suffer from irrelevance, toxicity, or bias in the outputs,
detracting from the quality and reliability of the responses.

Augmentation Hurdles. Integrating retrieved information
with the different task can be challenging, sometimes resulting
in disjointed or incoherent outputs. The process may also
encounter redundancy when similar information is retrieved
from multiple sources, leading to repetitive responses. Deter-
mining the significance and relevance of various passages and
ensuring stylistic and tonal consistency add further complexity.
Facing complex issues, a single retrieval based on the original
query may not suffice to acquire adequate context information.

Moreover, there’s a concern that generation models might
overly rely on augmented information, leading to outputs that
simply echo retrieved content without adding insightful or
synthesized information.

B. Advanced RAG

Advanced RAG introduces specific improvements to over-
come the limitations of Naive RAG. Focusing on enhancing re-
trieval quality, it employs pre-retrieval and post-retrieval strate-
gies. To tackle the indexing issues, Advanced RAG refines
its indexing techniques through the use of a sliding window
approach, fine-grained segmentation, and the incorporation of
metadata. Additionally, it incorporates several optimization
methods to streamline the retrieval process [S§].
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Fig. 3. Comparison between the three paradigms of RAG. (Left) Naive RAG mainly consists of three parts: indexing, retrieval and generation. (Middle)
Advanced RAG proposes multiple optimization strategies around pre-retrieval and post-retrieval, with a process similar to the Naive RAG, still following a
chain-like structure. (Right) Modular RAG inherits and develops from the previous paradigm, showcasing greater flexibility overall. This is evident in the
introduction of multiple specific functional modules and the replacement of existing modules. The overall process is not limited to sequential retrieval and

generation; it includes methods such as iterative and adaptive retrieval.

Pre-retrieval process. In this stage, the primary focus is
on optimizing the indexing structure and the original query.
The goal of optimizing indexing is to enhance the quality of
the content being indexed. This involves strategies: enhancing
data granularity, optimizing index structures, adding metadata,
alignment optimization, and mixed retrieval. While the goal
of query optimization is to make the user’s original question
clearer and more suitable for the retrieval task. Common
methods include query rewriting query transformation, query
expansion and other techniques [7], [9]-[11].

Post-Retrieval Process. Once relevant context is retrieved,
it’s crucial to integrate it effectively with the query. The main
methods in post-retrieval process include rerank chunks and
context compressing. Re-ranking the retrieved information to
relocate the most relevant content to the edges of the prompt is
a key strategy. This concept has been implemented in frame-
works such as LlamaIndexEI, LangChailﬂ and HayStack [|12].
Feeding all relevant documents directly into LLMs can lead
to information overload, diluting the focus on key details with
irrelevant content.To mitigate this, post-retrieval efforts con-
centrate on selecting the essential information, emphasizing
critical sections, and shortening the context to be processed.

Zhttps://www.llamaindex.ai
3https://www.langchain.com/

C. Modular RAG

The modular RAG architecture advances beyond the for-
mer two RAG paradigms, offering enhanced adaptability and
versatility. It incorporates diverse strategies for improving its
components, such as adding a search module for similarity
searches and refining the retriever through fine-tuning. Inno-
vations like restructured RAG modules [13] and rearranged
RAG pipelines [|14] have been introduced to tackle specific
challenges. The shift towards a modular RAG approach is
becoming prevalent, supporting both sequential processing and
integrated end-to-end training across its components. Despite
its distinctiveness, Modular RAG builds upon the foundational
principles of Advanced and Naive RAG, illustrating a progres-
sion and refinement within the RAG family.

1) New Modules: The Modular RAG framework introduces
additional specialized components to enhance retrieval and
processing capabilities. The Search module adapts to spe-
cific scenarios, enabling direct searches across various data
sources like search engines, databases, and knowledge graphs,
using LLM-generated code and query languages [15]. RAG-
Fusion addresses traditional search limitations by employing
a multi-query strategy that expands user queries into diverse
perspectives, utilizing parallel vector searches and intelligent
re-ranking to uncover both explicit and transformative knowl-
edge [[16]. The Memory module leverages the LLM’s memory
to guide retrieval, creating an unbounded memory pool that
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aligns the text more closely with data distribution through iter-
ative self-enhancement [[17]], [[18]]. Routing in the RAG system
navigates through diverse data sources, selecting the optimal
pathway for a query, whether it involves summarization,
specific database searches, or merging different information
streams [[19]]. The Predict module aims to reduce redundancy
and noise by generating context directly through the LLM,
ensuring relevance and accuracy [[13]]. Lastly, the Task Adapter
module tailors RAG to various downstream tasks, automating
prompt retrieval for zero-shot inputs and creating task-specific
retrievers through few-shot query generation [20]], [21]] .This
comprehensive approach not only streamlines the retrieval pro-
cess but also significantly improves the quality and relevance
of the information retrieved, catering to a wide array of tasks
and queries with enhanced precision and flexibility.

2) New Patterns: Modular RAG offers remarkable adapt-
ability by allowing module substitution or reconfiguration
to address specific challenges. This goes beyond the fixed
structures of Naive and Advanced RAG, characterized by a
simple “Retrieve” and “Read” mechanism. Moreover, Modular
RAG expands this flexibility by integrating new modules or
adjusting interaction flow among existing ones, enhancing its
applicability across different tasks.

Innovations such as the Rewrite-Retrieve-Read [7]|model
leverage the LLM’s capabilities to refine retrieval queries
through a rewriting module and a LM-feedback mechanism
to update rewriting model., improving task performance.
Similarly, approaches like Generate-Read [13] replace tradi-
tional retrieval with LLM-generated content, while Recite-
Read [22] emphasizes retrieval from model weights, enhanc-
ing the model’s ability to handle knowledge-intensive tasks.
Hybrid retrieval strategies integrate keyword, semantic, and
vector searches to cater to diverse queries. Additionally, em-
ploying sub-queries and hypothetical document embeddings
(HyDE) [11] seeks to improve retrieval relevance by focusing
on embedding similarities between generated answers and real
documents.

Adjustments in module arrangement and interaction, such
as the Demonstrate-Search-Predict (DSP) [23] framework
and the iterative Retrieve-Read-Retrieve-Read flow of ITER-
RETGEN [14], showcase the dynamic use of module out-
puts to bolster another module’s functionality, illustrating a
sophisticated understanding of enhancing module synergy.
The flexible orchestration of Modular RAG Flow showcases
the benefits of adaptive retrieval through techniques such as
FLARE [24] and Self-RAG [25]. This approach transcends
the fixed RAG retrieval process by evaluating the necessity
of retrieval based on different scenarios. Another benefit of
a flexible architecture is that the RAG system can more
easily integrate with other technologies (such as fine-tuning
or reinforcement learning) [26]]. For example, this can involve
fine-tuning the retriever for better retrieval results, fine-tuning
the generator for more personalized outputs, or engaging in
collaborative fine-tuning [27]].

D. RAG vs Fine-tuning

The augmentation of LLMs has attracted considerable atten-
tion due to their growing prevalence. Among the optimization

methods for LLMs, RAG is often compared with Fine-tuning
(FT) and prompt engineering. Each method has distinct charac-
teristics as illustrated in Figure |4, We used a quadrant chart to
illustrate the differences among three methods in two dimen-
sions: external knowledge requirements and model adaption
requirements. Prompt engineering leverages a model’s inherent
capabilities with minimum necessity for external knowledge
and model adaption. RAG can be likened to providing a model
with a tailored textbook for information retrieval, ideal for pre-
cise information retrieval tasks. In contrast, FT is comparable
to a student internalizing knowledge over time, suitable for
scenarios requiring replication of specific structures, styles, or
formats.

RAG excels in dynamic environments by offering real-
time knowledge updates and effective utilization of external
knowledge sources with high interpretability. However, it
comes with higher latency and ethical considerations regarding
data retrieval. On the other hand, FT is more static, requiring
retraining for updates but enabling deep customization of the
model’s behavior and style. It demands significant compu-
tational resources for dataset preparation and training, and
while it can reduce hallucinations, it may face challenges with
unfamiliar data.

In multiple evaluations of their performance on various
knowledge-intensive tasks across different topics, [28] re-
vealed that while unsupervised fine-tuning shows some im-
provement, RAG consistently outperforms it, for both exist-
ing knowledge encountered during training and entirely new
knowledge. Additionally, it was found that LLMs struggle
to learn new factual information through unsupervised fine-
tuning. The choice between RAG and FT depends on the
specific needs for data dynamics, customization, and com-
putational capabilities in the application context. RAG and
FT are not mutually exclusive and can complement each
other, enhancing a model’s capabilities at different levels.
In some instances, their combined use may lead to optimal
performance. The optimization process involving RAG and FT
may require multiple iterations to achieve satisfactory results.

IIT. RETRIEVAL

In the context of RAG, it is crucial to efficiently retrieve
relevant documents from the data source. There are several
key issues involved, such as the retrieval source, retrieval
granularity, pre-processing of the retrieval, and selection of
the corresponding embedding model.

A. Retrieval Source

RAG relies on external knowledge to enhance LLMs, while
the type of retrieval source and the granularity of retrieval
units both affect the final generation results.

1) Data Structure: Initially, text is s the mainstream source
of retrieval. Subsequently, the retrieval source expanded to in-
clude semi-structured data (PDF) and structured data (Knowl-
edge Graph, KG) for enhancement. In addition to retrieving
from original external sources, there is also a growing trend in
recent researches towards utilizing content generated by LLMs
themselves for retrieval and enhancement purposes.



TABLE I
SUMMARY OF RAG METHODS

. Retrieval Retrieval Augmentation  Retrieval
Method Retrieval Source .
Data Type Granularity Stage process
CoG [29] Wikipedia Text Phrase Pre-training Iterative
DenseX [30] FactoidWiki Text Proposition Inference Once
EAR [31] Dataset-base Text Sentence Tuning Once
UPRISE [20] Dataset-base Text Sentence Tuning Once
RAST [32] Dataset-base Text Sentence Tuning Once
Self-Mem [17] Dataset-base Text Sentence Tuning Iterative
FLARE [24] Search Engine,Wikipedia Text Sentence Tuning Adaptive
PGRA [33] Wikipedia Text Sentence Inference Once
FILCO [34] Wikipedia Text Sentence Inference Once
RADA [35] Dataset-base Text Sentence Inference Once
Filter-rerank [36] Synthesized dataset Text Sentence Inference Once
R-GQA [37] Dataset-base Text Sentence Pair Tuning Once
LLM-R [38] Dataset-base Text Sentence Pair Inference Iterative
TIGER [39] Dataset-base Text Item-base Pre-training Once
LM-Indexer [40] Dataset-base Text Item-base Tuning Once
BEQUE [9] Dataset-base Text Item-base Tuning Once
CT-RAG [41] Synthesized dataset Text Item-base Tuning Once
Atlas [42] Wikipedia, Common Crawl Text Chunk Pre-training Iterative
RAVEN [43] Wikipedia Text Chunk Pre-training Once
RETRO++ [44] Pre-training Corpus Text Chunk Pre-training Iterative
INSTRUCTRETRO [45] Pre-training corpus Text Chunk Pre-training Iterative
RRR [7] Search Engine Text Chunk Tuning Once
RA-e2e [46] Dataset-base Text Chunk Tuning Once
PROMPTAGATOR [21] BEIR Text Chunk Tuning Once
AAR [47] MSMARCO,Wikipedia Text Chunk Tuning Once
RA-DIT [27] Common Crawl,Wikipedia Text Chunk Tuning Once
RAG-Robust [48] Wikipedia Text Chunk Tuning Once
RA-Long-Form [49] Dataset-base Text Chunk Tuning Once
CoN [50] Wikipedia Text Chunk Tuning Once
Self-RAG [25] Wikipedia Text Chunk Tuning Adaptive
BGM [26] Wikipedia Text Chunk Inference Once
CoQ [51] Wikipedia Text Chunk Inference Iterative
Token-Elimination [52] Wikipedia Text Chunk Inference Once
PaperQA [53] Arxiv,Online Database,PubMed Text Chunk Inference Iterative
NoiseRAG [54] FactoidWiki Text Chunk Inference Once
IAG [55] Search Engine,Wikipedia Text Chunk Inference Once
NoMIRACL [56] Wikipedia Text Chunk Inference Once
ToC [57] Search Engine,Wikipedia Text Chunk Inference Recursive
SKR [58] Dataset-base, Wikipedia Text Chunk Inference Adaptive
ITRG [59] Wikipedia Text Chunk Inference Iterative
RAG-LongContext [60] Dataset-base Text Chunk Inference Once
ITER-RETGEN [14] Wikipedia Text Chunk Inference Tterative
IRCoT [61] Wikipedia Text Chunk Inference Recursive
LLM-Knowledge-Boundary [62] Wikipedia Text Chunk Inference Once
RAPTOR [63] Dataset-base Text Chunk Inference Recursive
RECITE [22] LLMs Text Chunk Inference Once
ICRALM |[64] Pile,Wikipedia Text Chunk Inference Iterative
Retrieve-and-Sample [65] Dataset-base Text Doc Tuning Once
Zemi [66] C4 Text Doc Tuning Once
CRAG [67] Arxiv Text Doc Inference Once
1-PAGER [68] Wikipedia Text Doc Inference Iterative
PRCA [69] Dataset-base Text Doc Inference Once
QLM-Doc-ranking [70] Dataset-base Text Doc Inference Once
Recomp [[71] Wikipedia Text Doc Inference Once
DSP [23] Wikipedia Text Doc Inference Iterative
RePLUG [72] Pile Text Doc Inference Once
ARM-RAG [73] Dataset-base Text Doc Inference Iterative
GenRead [13] LLMs Text Doc Inference Iterative
UniMS-RAG [74] Dataset-base Text Multi Tuning Once
CREA-ICL [19] Dataset-base Crosslingual, Text Sentence Inference Once
PKG [75] LLM Tabular, Text Chunk Inference Once
SANTA [76] Dataset-base Code,Text Item Pre-training Once
SURGE [77] Freebase KG Sub-Graph Tuning Once
MK-ToD [78] Dataset-base KG Entity Tuning Once
Dual-Feedback-ToD [[79] Dataset-base KG Entity Sequence Tuning Once
KnowledGPT [15] Dataset-base KG Triplet Inference Muti-time
FABULA [80] Dataset-base,Graph KG Entity Inference Once
HyKGE [81] CMeKG KG Entity Inference Once
KALMYV [82] Wikipedia KG Triplet Inference Iterative
RoG [83] Freebase KG Triplet Inference Iterative
G-Retriever [84] Dataset-base TextGraph Sub-Graph Inference Once
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Unstructured Data, such as text, is the most widely used
retrieval source, which are mainly gathered from corpus. For
open-domain question-answering (ODQA) tasks, the primary
retrieval sources are Wikipedia Dump with the current major
versions including HotpotQAE| (1st October , 2017), DPRE| (20
December, 2018). In addition to encyclopedic data, common
unstructured data includes cross-lingual text [19]] and domain-
specific data (such as medical [[67]]and legal domains [29])).

Semi-structured data. typically refers to data that contains a
combination of text and table information, such as PDF. Han-
dling semi-structured data poses challenges for conventional
RAG systems due to two main reasons. Firstly, text splitting
processes may inadvertently separate tables, leading to data
corruption during retrieval. Secondly, incorporating tables into
the data can complicate semantic similarity searches. When
dealing with semi-structured data, one approach involves lever-
aging the code capabilities of LLMs to execute Text-2-SQL
queries on tables within databases, such as TableGPT [835].
Alternatively, tables can be transformed into text format for
further analysis using text-based methods [75]. However, both
of these methods are not optimal solutions, indicating substan-
tial research opportunities in this area.

Structured data, such as knowledge graphs (KGs) [86] ,
which are typically verified and can provide more precise in-
formation. KnowledGPT [[15]] generates KB search queries and
stores knowledge in a personalized base, enhancing the RAG
model’s knowledge richness. In response to the limitations of
LLMs in understanding and answering questions about textual
graphs, G-Retriever [84] integrates Graph Neural Networks

4https://hotpotqa.github.io/wiki-readme. html
Shttps://github.com/facebookresearch/DPR

(GNNs), LLMs and RAG, enhancing graph comprehension
and question-answering capabilities through soft prompting
of the LLM, and employs the Prize-Collecting Steiner Tree
(PCST) optimization problem for targeted graph retrieval. On
the contrary, it requires additional effort to build, validate,
and maintain structured databases. On the contrary, it requires
additional effort to build, validate, and maintain structured
databases.

LLMs-Generated Content. Addressing the limitations of
external auxiliary information in RAG, some research has
focused on exploiting LLMSs’ internal knowledge. SKR [5§]]
classifies questions as known or unknown, applying retrieval
enhancement selectively. GenRead [13]] replaces the retriever
with an LLM generator, finding that LLM-generated contexts
often contain more accurate answers due to better alignment
with the pre-training objectives of causal language modeling.
Selfmem [17] iteratively creates an unbounded memory pool
with a retrieval-enhanced generator, using a memory selec-
tor to choose outputs that serve as dual problems to the
original question, thus self-enhancing the generative model.
These methodologies underscore the breadth of innovative
data source utilization in RAG, striving to improve model
performance and task effectiveness.

2) Retrieval Granularity: Another important factor besides
the data format of the retrieval source is the granularity of
the retrieved data. Coarse-grained retrieval units theoretically
can provide more relevant information for the problem, but
they may also contain redundant content, which could distract
the retriever and language models in downstream tasks [50],
[87]]. On the other hand, fine-grained retrieval unit granularity
increases the burden of retrieval and does not guarantee seman-
tic integrity and meeting the required knowledge. Choosing
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the appropriate retrieval granularity during inference can be
a simple and effective strategy to improve the retrieval and
downstream task performance of dense retrievers.

In text, retrieval granularity ranges from fine to coarse,
including Token, Phrase, Sentence, Proposition, Chunks, Doc-
ument. Among them, DenseX [30]proposed the concept of
using propositions as retrieval units. Propositions are defined
as atomic expressions in the text, each encapsulating a unique
factual segment and presented in a concise, self-contained nat-
ural language format. This approach aims to enhance retrieval
precision and relevance. On the Knowledge Graph (KG),
retrieval granularity includes Entity, Triplet, and sub-Graph.
The granularity of retrieval can also be adapted to downstream
tasks, such as retrieving Item IDs [40]in recommendation tasks
and Sentence pairs [38]]. Detailed information is illustrated in
Table [

B. Indexing Optimization

In the Indexing phase, documents will be processed, seg-
mented, and transformed into Embeddings to be stored in a
vector database. The quality of index construction determines
whether the correct context can be obtained in the retrieval
phase.

1) Chunking Strategy: The most common method is to split
the document into chunks on a fixed number of tokens (e.g.,
100, 256, 512) [88]. Larger chunks can capture more context,
but they also generate more noise, requiring longer processing
time and higher costs. While smaller chunks may not fully
convey the necessary context, they do have less noise. How-
ever, chunks leads to truncation within sentences, prompting
the optimization of a recursive splits and sliding window meth-
ods, enabling layered retrieval by merging globally related
information across multiple retrieval processes [89]]. Never-
theless, these approaches still cannot strike a balance between
semantic completeness and context length. Therefore, methods
like Small2Big have been proposed, where sentences (small)
are used as the retrieval unit, and the preceding and following
sentences are provided as (big) context to LLMs [90].

2) Metadata Attachments: Chunks can be enriched with
metadata information such as page number, file name, au-
thor,category timestamp. Subsequently, retrieval can be filtered
based on this metadata, limiting the scope of the retrieval.
Assigning different weights to document timestamps during
retrieval can achieve time-aware RAG, ensuring the freshness
of knowledge and avoiding outdated information.

In addition to extracting metadata from the original doc-
uments, metadata can also be artificially constructed. For
example, adding summaries of paragraph, as well as intro-
ducing hypothetical questions. This method is also known as
Reverse HyDE. Specifically, using LLM to generate questions
that can be answered by the document, then calculating the
similarity between the original question and the hypothetical
question during retrieval to reduce the semantic gap between
the question and the answer.

3) Structural Index: One effective method for enhancing
information retrieval is to establish a hierarchical structure for
the documents. By constructing In structure, RAG system can
expedite the retrieval and processing of pertinent data.

Hierarchical index structure. File are arranged in parent-
child relationships, with chunks linked to them. Data sum-
maries are stored at each node, aiding in the swift traversal
of data and assisting the RAG system in determining which
chunks to extract. This approach can also mitigate the illusion
caused by block extraction issues.

Knowledge Graph index. Utilize KG in constructing the
hierarchical structure of documents contributes to maintaining
consistency. It delineates the connections between different
concepts and entities, markedly reducing the potential for
illusions. Another advantage is the transformation of the
information retrieval process into instructions that LLM can
comprehend, thereby enhancing the accuracy of knowledge
retrieval and enabling LLM to generate contextually coherent
responses, thus improving the overall efficiency of the RAG
system. To capture the logical relationship between document
content and structure, KGP [91]] proposed a method of building
an index between multiple documents using KG. This KG
consists of nodes (representing paragraphs or structures in the
documents, such as pages and tables) and edges (indicating
semantic/lexical similarity between paragraphs or relationships
within the document structure), effectively addressing knowl-
edge retrieval and reasoning problems in a multi-document
environment.

C. Query Optimization

One of the primary challenges with Naive RAG is its
direct reliance on the user’s original query as the basis for
retrieval. Formulating a precise and clear question is difficult,
and imprudent queries result in subpar retrieval effectiveness.
Sometimes, the question itself is complex, and the language
is not well-organized. Another difficulty lies in language
complexity ambiguity. Language models often struggle when
dealing with specialized vocabulary or ambiguous abbrevi-
ations with multiple meanings. For instance, they may not
discern whether “LLM” refers to large language model or a
Master of Laws in a legal context.

1) Query Expansion: Expanding a single query into mul-
tiple queries enriches the content of the query, providing
further context to address any lack of specific nuances, thereby
ensuring the optimal relevance of the generated answers.

Multi-Query. By employing prompt engineering to expand
queries via LLMs, these queries can then be executed in
parallel. The expansion of queries is not random, but rather
meticulously designed.

Sub-Query. The process of sub-question planning represents
the generation of the necessary sub-questions to contextualize
and fully answer the original question when combined. This
process of adding relevant context is, in principle, similar
to query expansion. Specifically, a complex question can be
decomposed into a series of simpler sub-questions using the
least-to-most prompting method [92].

Chain-of-Verification(CoVe). The expanded queries undergo
validation by LLM to achieve the effect of reducing halluci-
nations. Validated expanded queries typically exhibit higher
reliability [93]].



2) Query Transformation: The core concept is to retrieve
chunks based on a transformed query instead of the user’s
original query.

Query Rewrite. The original queries are not always optimal
for LLM retrieval, especially in real-world scenarios. There-
fore, we can prompt LLM to rewrite the queries. In addition to
using LLM for query rewriting, specialized smaller language
models, such as RRR (Rewrite-retrieve-read) [7|]. The imple-
mentation of the query rewrite method in the Taobao, known
as BEQUE [9] has notably enhanced recall effectiveness for
long-tail queries, resulting in a rise in GMV.

Another query transformation method is to use prompt
engineering to let LLM generate a query based on the original
query for subsequent retrieval. HyDE [[11]] construct hypothet-
ical documents (assumed answers to the original query). It
focuses on embedding similarity from answer to answer rather
than seeking embedding similarity for the problem or query.
Using the Step-back Prompting method [10], the original
query is abstracted to generate a high-level concept question
(step-back question). In the RAG system, both the step-back
question and the original query are used for retrieval, and both
the results are utilized as the basis for language model answer
generation.

3) Query Routing: Based on varying queries, routing to
distinct RAG pipeline,which is suitable for a versatile RAG
system designed to accommodate diverse scenarios.

Metadata Router/ Filter. The first step involves extracting
keywords (entity) from the query, followed by filtering based
on the keywords and metadata within the chunks to narrow
down the search scope.

Semantic Router is another method of routing involves
leveraging the semantic information of the query. Specific
apprach see Semantic Router ﬂ Certainly, a hybrid routing
approach can also be employed, combining both semantic and
metadata-based methods for enhanced query routing.

D. Embedding

In RAG, retrieval is achieved by calculating the similarity
(e.g. cosine similarity) between the embeddings of the ques-
tion and document chunks, where the semantic representation
capability of embedding models plays a key role. This mainly
includes a sparse encoder (BM25) and a dense retriever (BERT
architecture Pre-training language models). Recent research
has introduced prominent embedding models such as AnglE,
Voyage, BGE,etc [94]-[96], which are benefit from multi-task
instruct tuning. Hugging Face’s MTEB leaderboardE]evaluates
embedding models across 8 tasks, covering 58 datasests. Ad-
ditionally, C-MTEB focuses on Chinese capability, covering
6 tasks and 35 datasets. There is no one-size-fits-all answer
to “which embedding model to use.” However, some specific
models are better suited for particular use cases.

1) Mix/hybrid Retrieval : Sparse and dense embedding
approaches capture different relevance features and can ben-
efit from each other by leveraging complementary relevance
information. For instance, sparse retrieval models can be used

Shttps://github.com/aurelio-labs/semantic-router
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to provide initial search results for training dense retrieval
models. Additionally, pre-training language models (PLMs)
can be utilized to learn term weights to enhance sparse
retrieval. Specifically, it also demonstrates that sparse retrieval
models can enhance the zero-shot retrieval capability of dense
retrieval models and assist dense retrievers in handling queries
containing rare entities, thereby improving robustness.

2) Fine-tuning Embedding Model: In instances where the
context significantly deviates from pre-training corpus, partic-
ularly within highly specialized disciplines such as healthcare,
legal practice, and other sectors replete with proprietary jargon,
fine-tuning the embedding model on your own domain dataset
becomes essential to mitigate such discrepancies.

In addition to supplementing domain knowledge, another
purpose of fine-tuning is to align the retriever and generator,
for example, using the results of LLM as the supervision signal
for fine-tuning, known as LSR (LM-supervised Retriever).
PROMPTAGATOR [21] utilizes the LLM as a few-shot query
generator to create task-specific retrievers, addressing chal-
lenges in supervised fine-tuning, particularly in data-scarce
domains. Another approach, LLM-Embedder [97], exploits
LLMs to generate reward signals across multiple downstream
tasks. The retriever is fine-tuned with two types of supervised
signals: hard labels for the dataset and soft rewards from
the LLMs. This dual-signal approach fosters a more effective
fine-tuning process, tailoring the embedding model to diverse
downstream applications. REPLUG [72] utilizes a retriever
and an LLM to calculate the probability distributions of the
retrieved documents and then performs supervised training
by computing the KL divergence. This straightforward and
effective training method enhances the performance of the
retrieval model by using an LM as the supervisory signal,
eliminating the need for specific cross-attention mechanisms.
Moreover, inspired by RLHF (Reinforcement Learning from
Human Feedback), utilizing LM-based feedback to reinforce
the retriever through reinforcement learning.

E. Adapter

Fine-tuning models may present challenges, such as in-
tegrating functionality through an API or addressing con-
straints arising from limited local computational resources.
Consequently, some approaches opt to incorporate an external
adapter to aid in alignment.

To optimize the multi-task capabilities of LLM, UP-
RISE [20] trained a lightweight prompt retriever that can
automatically retrieve prompts from a pre-built prompt pool
that are suitable for a given zero-shot task input. AAR
(Augmentation-Adapted Retriver) [47] introduces a universal
adapter designed to accommodate multiple downstream tasks.
While PRCA [[69]] add a pluggable reward-driven contextual
adapter to enhance performance on specific tasks. BGM [26]]
keeps the retriever and LLM fixed,and trains a bridge Seq2Seq
model in between. The bridge model aims to transform the
retrieved information into a format that LLMs can work with
effectively, allowing it to not only rerank but also dynami-
cally select passages for each query, and potentially employ
more advanced strategies like repetition. Furthermore, PKG
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introduces an innovative method for integrating knowledge
into white-box models via directive fine-tuning [75]. In this
approach, the retriever module is directly substituted to gen-
erate relevant documents according to a query. This method
assists in addressing the difficulties encountered during the
fine-tuning process and enhances model performance.

IV. GENERATION

After retrieval, it is not a good practice to directly input all
the retrieved information to the LLLM for answering questions.
Following will introduce adjustments from two perspectives:
adjusting the retrieved content and adjusting the LLM.

A. Context Curation

Redundant information can interfere with the final gener-
ation of LLM, and overly long contexts can also lead LLM
to the “Lost in the middle” problem [98]. Like humans, LLM
tends to only focus on the beginning and end of long texts,
while forgetting the middle portion. Therefore, in the RAG
system, we typically need to further process the retrieved
content.

1) Reranking: Reranking fundamentally reorders document
chunks to highlight the most pertinent results first, effectively
reducing the overall document pool, severing a dual purpose
in information retrieval, acting as both an enhancer and a
filter, delivering refined inputs for more precise language
model processing [70]. Reranking can be performed using
rule-based methods that depend on predefined metrics like
Diversity, Relevance, and MRR, or model-based approaches
like Encoder-Decoder models from the BERT series (e.g.,
SpanBERT), specialized reranking models such as Cohere
rerank or bge-raranker-large, and general large language mod-
els like GPT [12], [99].

2) Context Selection/Compression: A common misconcep-
tion in the RAG process is the belief that retrieving as many
relevant documents as possible and concatenating them to form
a lengthy retrieval prompt is beneficial. However, excessive
context can introduce more noise, diminishing the LLM’s
perception of key information .

(Long) LLMLingua [100], [101] utilize small language
models (SLMs) such as GPT-2 Small or LLaMA-7B, to
detect and remove unimportant tokens, transforming it into
a form that is challenging for humans to comprehend but
well understood by LLMs. This approach presents a direct
and practical method for prompt compression, eliminating the
need for additional training of LLMs while balancing language
integrity and compression ratio. PRCA tackled this issue by
training an information extractor [[69]]. Similarly, RECOMP
adopts a comparable approach by training an information
condenser using contrastive learning [71]]. Each training data
point consists of one positive sample and five negative sam-
ples, and the encoder undergoes training using contrastive loss
throughout this process [[102] .

In addition to compressing the context, reducing the num-
ber of documents aslo helps improve the accuracy of the
model’s answers. Ma et al. [[103]] propose the “Filter-Reranker”
paradigm, which combines the strengths of LLMs and SLMs.

In this paradigm, SLMs serve as filters, while LLMs function
as reordering agents. The research shows that instructing
LLMs to rearrange challenging samples identified by SLMs
leads to significant improvements in various Information
Extraction (IE) tasks. Another straightforward and effective
approach involves having the LLM evaluate the retrieved
content before generating the final answer. This allows the
LLM to filter out documents with poor relevance through LLM
critique. For instance, in Chatlaw [[104]], the LLM is prompted
to self-suggestion on the referenced legal provisions to assess
their relevance.

B. LLM Fine-tuning

Targeted fine-tuning based on the scenario and data char-
acteristics on LLMs can yield better results. This is also one
of the greatest advantages of using on-premise LLMs. When
LLM:s lack data in a specific domain, additional knowledge can
be provided to the LLM through fine-tuning. Huggingface’s
fine-tuning data can also be used as an initial step.

Another benefit of fine-tuning is the ability to adjust the
model’s input and output. For example, it can enable LLM to
adapt to specific data formats and generate responses in a par-
ticular style as instructed [37]]. For retrieval tasks that engage
with structured data, the SANTA framework [76] implements
a tripartite training regimen to effectively encapsulate both
structural and semantic nuances. The initial phase focuses on
the retriever, where contrastive learning is harnessed to refine
the query and document embeddings.

Aligning LLM outputs with human or retriever preferences
through reinforcement learning is a potential approach. For
instance, manually annotating the final generated answers
and then providing feedback through reinforcement learning.
In addition to aligning with human preferences, it is also
possible to align with the preferences of fine-tuned models
and retrievers [79]. When circumstances prevent access to
powerful proprietary models or larger parameter open-source
models, a simple and effective method is to distill the more
powerful models(e.g. GPT-4). Fine-tuning of LLM can also
be coordinated with fine-tuning of the retriever to align pref-
erences. A typical approach, such as RA-DIT [27], aligns the
scoring functions between Retriever and Generator using KL
divergence.

V. AUGMENTATION PROCESS IN RAG

In the domain of RAG, the standard practice often involves
a singular (once) retrieval step followed by generation, which
can lead to inefficiencies and sometimes is typically insuffi-
cient for complex problems demanding multi-step reasoning,
as it provides a limited scope of information [105]. Many
studies have optimized the retrieval process in response to this
issue, and we have summarised them in Figure [3

A. Iterative Retrieval

Iterative retrieval is a process where the knowledge base
is repeatedly searched based on the initial query and the text
generated so far, providing a more comprehensive knowledge
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Fig. 5. In addition to the most common once retrieval, RAG also includes three types of retrieval augmentation processes. (left) Iterative retrieval involves
alternating between retrieval and generation, allowing for richer and more targeted context from the knowledge base at each step. (Middle) Recursive retrieval
involves gradually refining the user query and breaking down the problem into sub-problems, then continuously solving complex problems through retrieval
and generation. (Right) Adaptive retrieval focuses on enabling the RAG system to autonomously determine whether external knowledge retrieval is necessary
and when to stop retrieval and generation, often utilizing LLM-generated special tokens for control.

base for LLMs. This approach has been shown to enhance
the robustness of subsequent answer generation by offering
additional contextual references through multiple retrieval
iterations. However, it may be affected by semantic discon-
tinuity and the accumulation of irrelevant information. ITER-
RETGEN [14] employs a synergistic approach that lever-
ages “retrieval-enhanced generation” alongside “‘generation-
enhanced retrieval” for tasks that necessitate the reproduction
of specific information. The model harnesses the content
required to address the input task as a contextual basis for
retrieving pertinent knowledge, which in turn facilitates the
generation of improved responses in subsequent iterations.

B. Recursive Retrieval

Recursive retrieval is often used in information retrieval and
NLP to improve the depth and relevance of search results.
The process involves iteratively refining search queries based
on the results obtained from previous searches. Recursive
Retrieval aims to enhance the search experience by gradu-
ally converging on the most pertinent information through a
feedback loop. IRCoT [61] uses chain-of-thought to guide
the retrieval process and refines the CoT with the obtained
retrieval results. ToC [57] creates a clarification tree that
systematically optimizes the ambiguous parts in the Query. It
can be particularly useful in complex search scenarios where
the user’s needs are not entirely clear from the outset or where
the information sought is highly specialized or nuanced. The
recursive nature of the process allows for continuous learning
and adaptation to the user’s requirements, often resulting in
improved satisfaction with the search outcomes.

To address specific data scenarios, recursive retrieval and
multi-hop retrieval techniques are utilized together. Recursive

retrieval involves a structured index to process and retrieve
data in a hierarchical manner, which may include summarizing
sections of a document or lengthy PDF before performing a
retrieval based on this summary. Subsequently, a secondary
retrieval within the document refines the search, embodying
the recursive nature of the process. In contrast, multi-hop
retrieval is designed to delve deeper into graph-structured data
sources, extracting interconnected information [[106].

C. Adaptive Retrieval

Adaptive retrieval methods, exemplified by Flare [24] and
Self-RAG [25]], refine the RAG framework by enabling LLMs
to actively determine the optimal moments and content for
retrieval, thus enhancing the efficiency and relevance of the
information sourced.

These methods are part of a broader trend wherein
LLMs employ active judgment in their operations, as seen
in model agents like AutoGPT, Toolformer, and Graph-
Toolformer [107]-[109]. Graph-Toolformer, for instance, di-
vides its retrieval process into distinct steps where LLMs
proactively use retrievers, apply Self-Ask techniques, and em-
ploy few-shot prompts to initiate search queries. This proactive
stance allows LLMs to decide when to search for necessary
information, akin to how an agent utilizes tools.

WebGPT [110] integrates a reinforcement learning frame-
work to train the GPT-3 model in autonomously using a
search engine during text generation. It navigates this process
using special tokens that facilitate actions such as search
engine queries, browsing results, and citing references, thereby
expanding GPT-3’s capabilities through the use of external
search engines. Flare automates timing retrieval by monitoring
the confidence of the generation process, as indicated by the



probability of generated terms [24]. When the probability falls
below a certain threshold would activates the retrieval system
to collect relevant information, thus optimizing the retrieval
cycle. Self-RAG [25]] introduces “reflection tokens” that allow
the model to introspect its outputs. These tokens come in
two varieties: “retrieve” and “critic”. The model autonomously
decides when to activate retrieval, or alternatively, a predefined
threshold may trigger the process. During retrieval, the gen-
erator conducts a fragment-level beam search across multiple
paragraphs to derive the most coherent sequence. Critic scores
are used to update the subdivision scores, with the flexibility
to adjust these weights during inference, tailoring the model’s
behavior. Self-RAG’s design obviates the need for additional
classifiers or reliance on Natural Language Inference (NLI)
models, thus streamlining the decision-making process for
when to engage retrieval mechanisms and improving the
model’s autonomous judgment capabilities in generating ac-
curate responses.

VI. TASK AND EVALUATION

The rapid advancement and growing adoption of RAG
in the field of NLP have propelled the evaluation of RAG
models to the forefront of research in the LLMs community.
The primary objective of this evaluation is to comprehend
and optimize the performance of RAG models across diverse
application scenarios.This chapter will mainly introduce the
main downstream tasks of RAG, datasets, and how to evaluate
RAG systems.

A. Downstream Task

The core task of RAG remains Question Answering (QA),
including traditional single-hop/multi-hop QA, multiple-
choice, domain-specific QA as well as long-form scenarios
suitable for RAG. In addition to QA, RAG is continuously
being expanded into multiple downstream tasks, such as Infor-
mation Extraction (IE), dialogue generation, code search, etc.
The main downstream tasks of RAG and their corresponding
datasets are summarized in Table [

B. Evaluation Target

Historically, RAG models assessments have centered on
their execution in specific downstream tasks. These evaluations
employ established metrics suitable to the tasks at hand. For
instance, question answering evaluations might rely on EM
and F1 scores [7]I, [45], [99], [72], whereas fact-checking
tasks often hinge on Accuracy as the primary metric [4],
[14], [42]. BLEU and ROUGE metrics are also commonly
used to evaluate answer quality [26[], [32], [52], [[78]]. Tools
like RALLE, designed for the automatic evaluation of RAG
applications, similarly base their assessments on these task-
specific metrics [[160]. Despite this, there is a notable paucity
of research dedicated to evaluating the distinct characteristics
of RAG models.The main evaluation objectives include:

Retrieval Quality. Evaluating the retrieval quality is crucial
for determining the effectiveness of the context sourced by
the retriever component. Standard metrics from the domains

of search engines, recommendation systems, and information
retrieval systems are employed to measure the performance of
the RAG retrieval module. Metrics such as Hit Rate, MRR, and
NDCG are commonly utilized for this purpose [[161]], [162].

Generation Quality. The assessment of generation quality
centers on the generator’s capacity to synthesize coherent and
relevant answers from the retrieved context. This evaluation
can be categorized based on the content’s objectives: unlabeled
and labeled content. For unlabeled content, the evaluation
encompasses the faithfulness, relevance, and non-harmfulness
of the generated answers. In contrast, for labeled content,
the focus is on the accuracy of the information produced by
the model [161]]. Additionally, both retrieval and generation
quality assessments can be conducted through manual or
automatic evaluation methods [29], [161], [163].

C. Evaluation Aspects

Contemporary evaluation practices of RAG models empha-
size three primary quality scores and four essential abilities,
which collectively inform the evaluation of the two principal
targets of the RAG model: retrieval and generation.

1) Quality Scores: Quality scores include context rele-
vance, answer faithfulness, and answer relevance. These qual-
ity scores evaluate the efficiency of the RAG model from
different perspectives in the process of information retrieval
and generation [[164]-[166].

Context Relevance evaluates the precision and specificity
of the retrieved context, ensuring relevance and minimizing
processing costs associated with extraneous content.

Answer Faithfulness ensures that the generated answers
remain true to the retrieved context, maintaining consistency
and avoiding contradictions.

Answer Relevance requires that the generated answers are
directly pertinent to the posed questions, effectively addressing
the core inquiry.

2) Required Abilities: RAG evaluation also encompasses
four abilities indicative of its adaptability and efficiency:
noise robustness, negative rejection, information integration,
and counterfactual robustness [[167], [[168]]. These abilities are
critical for the model’s performance under various challenges
and complex scenarios, impacting the quality scores.

Noise Robustness appraises the model’s capability to man-
age noise documents that are question-related but lack sub-
stantive information.

Negative Rejection assesses the model’s discernment in
refraining from responding when the retrieved documents do
not contain the necessary knowledge to answer a question.

Information Integration evaluates the model’s proficiency in
synthesizing information from multiple documents to address
complex questions.

Counterfactual Robustness tests the model’s ability to rec-
ognize and disregard known inaccuracies within documents,
even when instructed about potential misinformation.

Context relevance and noise robustness are important for
evaluating the quality of retrieval, while answer faithfulness,
answer relevance, negative rejection, information integration,
and counterfactual robustness are important for evaluating the
quality of generation.
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TABLE II
DOWNSTREAM TASKS AND DATASETS OF RAG

Task Sub Task Dataset Method

QA Single-hop Natural Qustion(NQ) [[111]

TriviaQA(TQA) [113]

SQuAD [114]
Web Questlons(WebQ) .
PopQA [116]
MS MARCO [117]
Multi-hop HotpotQA [[118§]]
2WikiMultiHopQA [119]
MuSiQue [120]
Long-form QA ELI5 , 49), [51]
NarratlveQA(NQA) [122] 45). (60). [63 |
ASQA [124]
QMSum(QM) [125]
Domain QA Qasper ||
COVID-QA [127]
CMB [128],MMCU_Medical [129]
Multi-Choice QA QUALITY ||
ARC [131]
CommonsenseQA ||
Graph QA GraphQA [8
Dialog Dialog Generation Wizard of Wlklpedla (WoW) .
Personal Dialog KBP ||
DuleMon ||
Task-oriented Dialog CamRest |-|
Recommendation Amazon(Toys,Sport,Beauty) .
IE Event Argument Extraction WikiEvent ||
RAMS [140]
Relation Extraction T-REx I-I ,ZsRE .
Reasoning Commonsense Reasoning HellaSwag [1
CoT Reasoning CoT Reasoning [144]
Complex Reasoning CSQA ||
Others Language Understanding MMLU
Language Modeling WikiText- 103 [147]

StrategyQA [148]
Fact Checking/Verification ~ FEVER [149]

PubHealth [|15
Text Generation Biography ||
Text Summarization WikiASP |

XSum |
Text Classification VioLens |1

TREC [
Sentiment SST-2 ||
Code Search CodeSearchNet
Robustness Evaluation NoMIRACL [56]

Math GSMBK [158
Machine Translation JRC-Acquis [15




TABLE III
SUMMARY OF METRICS APPLICABLE FOR EVALUATION ASPECTS OF RAG

Context Faithfulness Answer Noise Ne.gati.ve Informat.ion Counterfactual
Relevance Relevance  Robustness  Rejection  Integration Robustness
Accuracy v v v v v v v
EM v
Recall v
Precision v v
R-Rate v
Cosine Similarity v
Hit Rate v
MRR v
NDCG v
BLEU v v v
ROUGE/ROUGE-L v v v

The specific metrics for each evaluation aspect are sum-
marized in Table It is essential to recognize that these
metrics, derived from related work, are traditional measures
and do not yet represent a mature or standardized approach for
quantifying RAG evaluation aspects. Custom metrics tailored
to the nuances of RAG models, though not included here, have
also been developed in some evaluation studies.

D. Evaluation Benchmarks and Tools

A series of benchmark tests and tools have been proposed
to facilitate the evaluation of RAG.These instruments furnish
quantitative metrics that not only gauge RAG model perfor-
mance but also enhance comprehension of the model’s capabil-
ities across various evaluation aspects. Prominent benchmarks
such as RGB, RECALL and CRUD [167]-[169] focus on
appraising the essential abilities of RAG models. Concur-
rently, state-of-the-art automated tools like RAGAS [164],
ARES [165], and TruLenﬁ employ LLMs to adjudicate the
quality scores. These tools and benchmarks collectively form
a robust framework for the systematic evaluation of RAG
models, as summarized in Table

VII. DISCUSSION AND FUTURE PROSPECTS

Despite the considerable progress in RAG technology, sev-
eral challenges persist that warrant in-depth research.This
chapter will mainly introduce the current challenges and future
research directions faced by RAG.

A. RAG vs Long Context

With the deepening of related research, the context of LLMs
is continuously expanding [[170]-[172]. Presently, LLMs can
effortlessly manage contexts exceeding 200,000 tokens ﬂ This
capability signifies that long-document question answering,
previously reliant on RAG, can now incorporate the entire
document directly into the prompt. This has also sparked
discussions on whether RAG is still necessary when LLMs

8https://www.trulens.org/trulens_eval/core_concepts_rag_triad/
9https://kimi.moonshot.cn

are not constrained by context. In fact, RAG still plays an
irreplaceable role. On one hand, providing LLMs with a
large amount of context at once will significantly impact its
inference speed, while chunked retrieval and on-demand input
can significantly improve operational efficiency. On the other
hand, RAG-based generation can quickly locate the original
references for LLMs to help users verify the generated an-
swers. The entire retrieval and reasoning process is observable,
while generation solely relying on long context remains a
black box. Conversely, the expansion of context provides new
opportunities for the development of RAG, enabling it to
address more complex problems and integrative or summary
questions that require reading a large amount of material to
answer [49]. Developing new RAG methods in the context of
super-long contexts is one of the future research trends.

B. RAG Robustness

The presence of noise or contradictory information during
retrieval can detrimentally affect RAG’s output quality. This
situation is figuratively referred to as “Misinformation can
be worse than no information at all”’. Improving RAG’s
resistance to such adversarial or counterfactual inputs is gain-
ing research momentum and has become a key performance
metric [48[, [50], [82]. Cuconasu et al. [54] analyze which
type of documents should be retrieved, evaluate the relevance
of the documents to the prompt, their position, and the
number included in the context. The research findings reveal
that including irrelevant documents can unexpectedly increase
accuracy by over 30%, contradicting the initial assumption
of reduced quality. These results underscore the importance
of developing specialized strategies to integrate retrieval with
language generation models, highlighting the need for further
research and exploration into the robustness of RAG.

C. Hybrid Approaches

Combining RAG with fine-tuning is emerging as a leading
strategy. Determining the optimal integration of RAG and
fine-tuning whether sequential, alternating, or through end-to-
end joint training—and how to harness both parameterized
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TABLE IV

SUMMARY OF EVALUATION FRAMEWORKS

Evaluation Framework

Evaluation Targets

Evaluation Aspects

Quantitative Metrics

Noise Robustness Accuracy
RGB! Retrieval Quality Negative Rejection EM
Generation Quality Information Integration Accuracy
Counterfactual Robustness Accuracy
RECALL Generation Quality Counterfactual Robustness R-Rate (Reappearance Rate)
. . Context Relevance *
RAGAS? G‘Zg;jgﬂ%‘j:l?t’ Faithfulness *
y Answer Relevance Cosine Similarity
. . Context Relevance Accuracy
ARES? Giigieel:;anéls:lti}t, Faithfulness Accuracy
y Answer Relevance Accuracy
. . Context Relevance
TruLens? GReErblter;Z:,iggnQ(lgli:lti{ Faithfulness
y Answer Relevance
Creative Generation BLEU
CRUD' Retrieval Quality Knowledge-intensive QA ROUGE-L
Generation Quality Error Correction BertScore
Summarization RAGQuestEval

1 represents a benchmark, and i represents a tool. * denotes customized quantitative metrics, which deviate from traditional
metrics. Readers are encouraged to consult pertinent literature for the specific quantification formulas associated with these
metrics, as required.

and non-parameterized advantages are areas ripe for explo-
ration [27]. Another trend is to introduce SLMs with specific
functionalities into RAG and fine-tuned by the results of RAG
system. For example, CRAG [67] trains a lightweight retrieval
evaluator to assess the overall quality of the retrieved docu-
ments for a query and triggers different knowledge retrieval
actions based on confidence levels.

D. Scaling laws of RAG

End-to-end RAG models and pre-trained models based
on RAG are still one of the focuses of current re-
searchers [[173].The parameters of these models are one of
the key factors.While scaling laws [174] are established for
LLMs, their applicability to RAG remains uncertain. Initial
studies like RETRO++ [44] have begun to address this, yet the
parameter count in RAG models still lags behind that of LLMs.
The possibility of an Inverse Scaling Law [117], where smaller
models outperform larger ones, is particularly intriguing and
merits further investigation.

E. Production-Ready RAG

RAG?’s practicality and alignment with engineering require-
ments have facilitated its adoption. However, enhancing re-
trieval efficiency, improving document recall in large knowl-
edge bases, and ensuring data security—such as preventing

10https://github.com/inverse-scaling/prize

inadvertent disclosure of document sources or metadata by
LLMs—are critical engineering challenges that remain to be
addressed [175]).

The development of the RAG ecosystem is greatly impacted
by the progression of its technical stack. Key tools like
LangChain and LLamalndex have quickly gained popularity
with the emergence of ChatGPT, providing extensive RAG-
related APIs and becoming essential in the realm of LLMs.The
emerging technology stack, while not as rich in features as
LangChain and LLamalndex, stands out through its specialized
products. For example, Flowise Al prioritizes a low-code
approach, allowing users to deploy Al applications, including
RAG, through a user-friendly drag-and-drop interface. Other
technologies like HayStack, Meltano, and Cohere Coral are
also gaining attention for their unique contributions to the field.

In addition to Al-focused vendors, traditional software and
cloud service providers are expanding their offerings to include
RAG-centric services. Weaviate’s Verba [[7] is designed for
personal assistant applications, while Amazon’s Kendra []ZI
offers intelligent enterprise search services, enabling users to
browse various content repositories using built-in connectors.
In the development of RAG technology, there is a clear
trend towards different specialization directions, such as: 1)
Customization - tailoring RAG to meet specific requirements.
2) Simplification - making RAG easier to use to reduce the

https://github.com/weaviate/Verba
12https://aws.amazon.com/cn/kendra/
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The mutual growth of RAG models and their technology
stacks is evident; technological advancements continuously
establish new standards for existing infrastructure. In turn,
enhancements to the technology stack drive the development
of RAG capabilities. RAG toolkits are converging into a
foundational technology stack, laying the groundwork for
advanced enterprise applications. However, a fully integrated,
comprehensive platform concept is still in the future, requiring
further innovation and development.

F. Multi-modal RAG

RAG has transcended its initial text-based question-
answering confines, embracing a diverse array of modal data.
This expansion has spawned innovative multimodal models
that integrate RAG concepts across various domains:

Image. RA-CM3 [176] stands as a pioneering multimodal
model of both retrieving and generating text and images.
BLIP-2 [[177] leverages frozen image encoders alongside
LLMs for efficient visual language pre-training, enabling zero-
shot image-to-text conversions. The “Visualize Before You
Write” method [[178]] employs image generation to steer the
LM’s text generation, showing promise in open-ended text
generation tasks.

Audio and Video. The GSS method retrieves and stitches
together audio clips to convert machine-translated data into
speech-translated data [[179]. UEOP marks a significant ad-
vancement in end-to-end automatic speech recognition by
incorporating external, offline strategies for voice-to-text con-
version [[180]. Additionally, KNN-based attention fusion lever-
ages audio embeddings and semantically related text embed-
dings to refine ASR, thereby accelerating domain adaptation.
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(crup ) ((Ree ) (RecALL

((TruLens ) (Rracas ) AREs |

Benchmarks

Tools

Vid2Seq augments language models with specialized temporal
markers, facilitating the prediction of event boundaries and
textual descriptions within a unified output sequence [181].

Code. RBPS [182] excels in small-scale learning tasks by
retrieving code examples that align with developers’ objectives
through encoding and frequency analysis. This approach has
demonstrated efficacy in tasks such as test assertion genera-
tion and program repair. For structured knowledge, the CoK
method [106] first extracts facts pertinent to the input query
from a knowledge graph, then integrates these facts as hints
within the input, enhancing performance in knowledge graph
question-answering tasks.

VIII. CONCLUSION

The summary of this paper, as depicted in Figure [} empha-
sizes RAG’s significant advancement in enhancing the capa-
bilities of LLMs by integrating parameterized knowledge from
language models with extensive non-parameterized data from
external knowledge bases. The survey showcases the evolution
of RAG technologies and their application on many different
tasks. The analysis outlines three developmental paradigms
within the RAG framework: Naive, Advanced, and Modu-
lar RAG, each representing a progressive enhancement over
its predecessors. RAG’s technical integration with other Al
methodologies, such as fine-tuning and reinforcement learning,
has further expanded its capabilities. Despite the progress in
RAG technology, there are research opportunities to improve
its robustness and its ability to handle extended contexts.
RAG’s application scope is expanding into multimodal do-
mains, adapting its principles to interpret and process diverse
data forms like images, videos, and code. This expansion high-
lights RAG’s significant practical implications for Al deploy-
ment, attracting interest from academic and industrial sectors.



The growing ecosystem of RAG is evidenced by the rise in
RAG-centric Al applications and the continuous development
of supportive tools. As RAG’s application landscape broadens,
there is a need to refine evaluation methodologies to keep
pace with its evolution. Ensuring accurate and representative
performance assessments is crucial for fully capturing RAG’s
contributions to the Al research and development community.
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