
LLM-FE: Automated Feature Engineering for Tabular
Data with LLMs as Evolutionary Optimizers

Nikhil Abhyankar
Virginia Tech

nikhilsa@vt.edu

Parshin Shojaee
Virginia Tech

parshinshojaee@vt.edu

Chandan K. Reddy
Virginia Tech

reddy@cs.vt.edu

Abstract

Automated feature engineering plays a critical role in improving predictive model
performance for tabular learning tasks. Traditional automated feature engineering
methods are limited by their reliance on pre-defined transformations within fixed,
manually designed search spaces, often neglecting domain knowledge. Recent
advances using Large Language Models (LLMs) have enabled the integration
of domain knowledge into the feature engineering process. However, existing
LLM-based approaches use direct prompting or rely solely on validation scores
for feature selection, failing to leverage insights from prior feature discovery
experiments or establish meaningful reasoning between feature generation and
data-driven performance. To address these challenges, we propose LLM-FE, a
novel framework that combines evolutionary search with the domain knowledge
and reasoning capabilities of LLMs to automatically discover effective features for
tabular learning tasks. LLM-FE formulates feature engineering as a program search
problem, where LLMs propose new feature transformation programs iteratively, and
data-driven feedback guides the search process. Our results demonstrate that LLM-
FE consistently outperforms state-of-the-art baselines, significantly enhancing
the performance of tabular prediction models across diverse classification and
regression benchmarks.

The code is available at: :https://github.com/nikhilsab/LLMFE

1 Introduction

Feature engineering, the process of transforming raw data into meaningful features for machine
learning models, is crucial for improving predictive performance, particularly when working with
tabular data [10]. In many tabular prediction tasks, well-designed features have been shown to
significantly enhance the performance of tree-based models, often outperforming deep learning
models that rely on learned representations [14]. However, data-centric tasks such as feature
engineering are one of the most challenging processes in the tabular learning workflow [2, 20], as they
require experts and data scientists to explore many possible combinations in the vast combinatorial
space of feature transformations. Classical feature engineering methods [22, 24, 23, 21, 45]
construct extensive search spaces of feature processing operations, relying on various search and
optimization techniques to identify the most effective features. However, these search spaces are
mostly constrained by predefined, manually designed transformations and often fail to incorporate
domain knowledge [45]. Domain knowledge can serve as an invaluable prior for identifying these
transformations, leading to reduced complexity and more interpretable and effective features [20].

Recently, Large Language Models (LLMs) have emerged as a powerful solution to this challenge,
offering access to extensive embedded domain knowledge that can be leveraged for feature
engineering. While recent approaches have demonstrated promising results in incorporating this
knowledge into automated feature discovery, current LLM-based methods [20, 17] rely predominantly

Preprint. Under review.

ar
X

iv
:2

50
3.

14
43

4v
2

 [
cs

.L
G

]
 2

7
M

ay
 2

02
5

https://github.com/nikhilsab/LLMFE

1 29 33.2 20.66 11.0

… … … … …

m 23 26.9

1 29 33.2 20.66 11.0

… … … … …

m 23 26.9

1 29 33.2 20.66 11.0

… … … … …

M 23 26.9

Prompt

Instruction: <role and instruction>
Task Description: <task description>
Feature Description:
- <feature> : <feature description>
Data Samples: <examples>

Evaluation Function
def evaluate (data, ML model) → score
 import sklearn
 …
 …

 return score

Demonstration
def modify_features_v0 (data_in) → data_out
<sample code>
def modify_features_v1 (data_in) → data_out
<code to complete>

LLMOriginal Data
and Metadata

.

.

.

#1

#2

#3

#n

(a) New Feature Generation

(c) Feature Evaluation

(b) Feature Engineering

glucose insulin age bmi

1 89 94 29 33.2

… … … … …

m 148 0 23 26.9

glucose age bmi insulin_
resistance

age_
bmi

1 89 29 33.2 20.66 11.0

… … … … … …

m 148 23 26.9 0.00 45.1

ML Prediction Model
Island 2

Score:
0.8034

Score:
0.8247

Score:
0.7964

Score:
0.6902

Score:
0.7865

Score:
0.8155

.

.

.

(d) Experience
Management

Store in Long-term
Memory

In-Context
Examples

Island 1

Train a prediction model on the new
dataset and get the validation score

Generate new feature
transformation hypothesis

as a Python program

…

Island k
or

Sample from Memory

def modify_features (df_in):

“““

Thought1: Insulin resistance is a well-known

risk factor for diabetes

Feature 1:

inuslin_resistance=glucose*insulin/405

….

….

”””

 # Create a copy

 df_out = df_in.copy()

 # Find Insulin resistance

df_out[`insulin_resistance`] =

(df_in[`glucose`]*df_in[`insulin`])/405

df_out.drop(columns=[`insulin`], inplace=True)

 # Find Age_BMI

 df_out[`age_bmi`] = df_in[`age`]*df_in[`bmi`]

 return df_out

.

.

.

.

.

.

.

.

.

Figure 1: Overview of the LLM-FE Framework. For a given dataset, LLM-FE follows these steps: (a)
New Feature Generation, where an LLM generates feature transformation hypotheses as programs for a
given tabular dataset; (b) Feature Engineering, where the feature transformation program is applied to the
underlying dataset, resulting in a modified dataset; (c) Feature Evaluation, where the modified dataset with
the new features is evaluated using a prediction model; (d) Experience Management, which maintains
a buffer of high-scoring programs that act as in-context samples for LLM’s iterative refinement prompt.
The features generated by LLM-FE are interpretable, using LLM’s knowledge of the problem’s domain.

on direct prompting mechanisms or validation scores to guide the feature generation process. These
approaches do not leverage insights from prior feature discovery experiments, thereby falling short of
establishing meaningful reasoning between feature generation and data-driven performance.

To address these limitations, we propose LLM-FE, a novel framework integrating the capabilities
of LLMs with tabular prediction models and evolutionary search to facilitate effective feature
optimization. As shown in Figure 1, LLM-FE follows an iterative process to generate and evaluate the
hypothesis of the feature transformation, using the performance of the tabular prediction model as a
reward to enhance the generation of effective features. Starting from an initial feature transformation
program, LLM-FE leverages the LLMs’ embedded domain knowledge by incorporating task-specific
details, feature descriptions, and a subset of data samples to generate new feature discovery programs
(Figure 1(a)). At each iteration, LLM acts as a knowledge-guided evolutionary optimizer, which
mutates examples of previously successful feature transformation programs to generate new effective
features [30]. The newly proposed features are then integrated with the original dataset to yield an
augmented dataset (Figure 1(b)). The prediction model’s performance is evaluated on a held-out
validation set derived from the augmented dataset (Figure 1(c)), provides data-driven feedback
that, combined with a dynamic memory of previously explored feature transformation programs
(Figure 1(d)), guides the LLM to refine its feature generation iteratively.

Table 1: Comparison of existing feature engineering methods.

Method Domain Feedback Complex Multi-Feature
Knowledge Driven Features Refinement

AutoFeat [21] ✗ ✗ ✓ ✗

OpenFE [45] ✗ ✗ ✓ ✗

FeatLLM [17] ✓ ✗ ✗ ✗

CAAFE [20] ✓ ✓ ✗ ✗

OCTree [31] ✓ ✓ ✗ ✗

LLM-FE ✓ ✓ ✓ ✓

Table 1 compares LLM-FE to several state-
of-the-art classical and LLM-based feature
engineering methods. Traditional methods
lack adaptability and deeper contextual
understanding, while LLM-based methods
generate simple features [25] or use
feedback to iteratively refine only a single
rule. In contrast, LLM-FE supports all
four aspects by leveraging LLM-based
domain knowledge and feedback-driven
optimization to generalize well across table
prediction tasks. We evaluate LLM-FE
with GPT-3.5-Turbo [34] and Llama-3.1-8B-Instruct [11] backbones on classification and
regression tasks across diverse tabular datasets. LLM-FE consistently outperforms the state-of-the-art

2

feature engineering methods, identifying contextually relevant features that improve downstream
performance. In particular, we observe improvements with tabular models like XGBoost [6], TabPFN
[19], and MLP [13]. Our analysis also highlights the importance of evolutionary search in achieving
effective results. The major contributions of this work can be summarized as.

• We introduce LLM-FE, a novel framework that leverages the LLM’s reasoning capabilities and
domain knowledge, coupled with evolutionary search, to perform automated feature engineering for
tabular data.

• Our experimental results demonstrate the effectiveness of LLM-FE, showcasing its ability to
outperform state-of-the-art baselines across diverse benchmark datasets.

• Through a comprehensive ablation study, we highlight the critical role of domain knowledge,
evolutionary search, data-driven feedback, and data samples in guiding the LLM to efficiently explore
the feature space and discover impactful features more effectively.

2 Related Works

Feature Engineering. Feature engineering involves creating meaningful features from raw data
to improve predictive performance [20]. The growing complexity of datasets has driven the
automation of feature engineering to reduce manual effort and optimize feature discovery. Traditional
automated feature engineering methods include tree-based exploration [24], iterative subsampling
[21], and transformation enumeration [22]. Learning-based methods leverage machine learning
and reinforcement learning for feature transformation [33, 23, 44]. OpenFE [45] integrates a
feature-boosting algorithm with a two-stage pruning strategy. These traditional approaches often
fail to leverage domain knowledge for feature discovery, making LLMs well-suited for such tabular
prediction tasks due to their prior contextual domain understanding.

LLMs and Optimization. Recent advances in LLMs enable them to leverage their pre-trained
knowledge to handle novel tasks through techniques such as prompt engineering and in-context
learning without requiring additional training [4, 40]. Despite the progress made with LLMs, they
often struggle with factually incorrect or inconsistent outputs [29, 47]. Researchers have thus explored
methods that use feedback or refinement mechanisms to improve LLM responses and leverage
them within complex optimization tasks [29, 16]. More recent approaches involving evolutionary
optimization frameworks couple LLMs with evaluators [27, 28, 41, 26], using LLMs to perform
adaptive mutation and crossover operations [30]. This approach has shown success in areas such as
prompt optimization [43, 15], neural architecture search [46, 5], discovery of mathematical heuristics
[35], and symbolic regression [36]. Building on these concepts, our LLM-FE framework utilizes an
LLM as an evolutionary optimizer by coupling its prior knowledge with data-driven refinement to
discover optimal features for the underlying tabular learning task.

LLMs for Tabular Learning. LLMs have been applied to structured data by converting tables
into natural language [9, 18, 39]. Approaches include table-specific tokenization for robust pre-
training [42] and using fine-tuning or few-shot in-context learning for tabular prediction tasks [9, 18,
32]. Recently, LLMs have been used for feature engineering with FeatLLM [17], improving tabular
predictions by generating and parsing rules to engineer binary features. CAAFE [20] introduces
a context-aware approach where LLMs generate features directly from task descriptions, while
OCTree [31] incorporates an additional decision tree reasoning step to iteratively improve a single
rule at a time. In contrast, LLM-FE maintains multiple promising candidates and uses evolutionary
search to efficiently navigate the feature space via mutation and crossover without using any additional
steps. LLM-FE thus uses LLMs to efficiently navigate the optimization space of feature discovery,
generating meaningful features that are informed by prior knowledge and enriched with data-driven
insights and evolutionary exploration.

3 LLM-FE Approach
3.1 Problem Formulation
A tabular dataset D comprises N rows (or instances), each characterized by d columns (or features).
Each data instance xi is a d-dimensional feature vector with feature names denoted by C = {cj}dj=1.

3

The dataset is accompanied by metadata M, which contains feature descriptions and task-specific
information. For supervised learning tasks, each instance xi is associated with a corresponding
label yi, where yi ∈ {0, 1, ...,K} for classification tasks with K classes, and yi ∈ R for regression
tasks. Given a labeled tabular dataset D = (xi, yi)

N
i=1 and prediction model f to map from the input

feature space X to its corresponding label space Y , the feature engineering objective is to determine
an optimal feature transformation T , which enhances the performance of a predictive model when
trained on the transformed input space. Formally, the feature engineering task can be defined as:

max
T

E(f∗(T (Xval)),Yval) (1)

subject to:

f∗ = argmin
f

Lf (f(T (Xtr)),Ytr) (2)

where (Xtr,Ytr) and (Xval,Yval) are the sub-training set and validation set, respectively, that is
derived from the training data (Xtrain,Ytrain). The feature transformation T generated by the LLM
πθ and defined as T = πθ(Xtrain), meaning the transformation is learned from the training data
by the LLM. The predictive model f∗ is then trained on the transformed training data T (Xtrain)
to minimize loss. Consequently, the bilevel optimization problem seeks to identify the feature
transformations T that maximize the performance E on T (Xval) while minimizing the loss function
on the transformed training data, thereby efficiently exploring the potential feature space.

3.2 Feature Generation

Figure 1(a) illustrates the feature generation step that uses an LLM to create multiple new feature
transformation programs, leveraging the model’s prior knowledge, reasoning, and in-context learning
abilities to effectively explore the feature space.

3.2.1 Input Prompt

To facilitate the creation of effective and contextually relevant feature discovery programs, we develop
a structured prompting methodology. The prompt is designed to provide comprehensive data-specific
information, an initial feature transformation program for the evolution starting point, an evaluation
function, and a well-defined output format (see Appendix B.2 for more details). Our input prompts p
are composed of the following key elements:

Instruction. The LLM is assigned the task of finding the most relevant features to help solve the
given task. The task emphasizes using the LLM’s prior knowledge of the dataset’s domain to generate
features. The LLM is explicitly instructed to generate novel features and provide clear step-by-step
reasoning for their relevance to the prediction task. Moreover, since LLMs tend to generate simple
features, we specifically instruct the LLM to generate complex features.

Dataset Specification. After providing the instructions, we provide LLM with the dataset-specific
information from the metadata M. This information encompasses a detailed description of the
intended downstream task, along with the feature names C and their corresponding descriptions. In
addition, we provide a limited number of representative samples from the tabular dataset. To improve
the effective interpretation of the data, we adopt the serialization approach used in previous works
[9, 18, 17]. We serialized the data samples as follows:

Serialize(xi, yi, C) = ‘If c1 is x1
i , ..., cd is xd

i . Then Result is yi’ (3)

By providing dataset-specific details, we guide the language model to focus on the most contextually
pertinent features that directly support the dataset and task objective.

Evaluation Function. The evaluation function, incorporated into the prompt, guides the language
model to generate feature transformation programs that align with performance objectives. These
programs augment the original dataset with new features, which are assessed on the basis of a
prediction model’s performance when trained on the augmented data. The model’s evaluation score
on the augmented validation set serves as an indicator of feature quality. By including the evaluation
function in the prompt, the LLM generates programs that are inherently aligned with the desired
performance criteria.

4

In-Context Demonstration. Specifically, we sample the k highest-performing demonstrations
from previous iterations, enabling the LLM to build on successful outputs. The iterative interaction
between the LLM’s generative outputs and the evaluator’s feedback, informed by these examples,
facilitates a systematic refinement process. With each iteration, the LLM progressively improves its
outputs by leveraging patterns and insights identified in previous successful demonstrations.

3.2.2 Feature Sampling

At each iteration t, we construct the prompt pt by sampling the previous iteration as input to the LLM
πθ, resulting in the output T1, . . . , Tb = πθ(pt) representing a set of b sampled programs. To promote
diversity and maintain a balance between exploration (creativity) and exploitation (prior knowledge),
we employ stochastic temperature-based sampling. Each of the sampled feature transforms (Ti)
is executed before evaluation to discard error-prone programs. This ensures that only valid and
executable feature transformation programs are considered further in the optimization pipeline.
In addition, to ensure computational efficiency, a maximum execution time threshold is enforced,
discarding any programs that exceed it.

3.3 Data-Driven Evaluation

As illustrated in Figure 1(b), we use the generated features to augment the original dataset with the
newly derived features. Similar to [20, 31], our feature evaluation process comprises two stages:
(i) model training on the augmented dataset, and (ii) performance assessment for feature quality
(Figure 1(c)). We fit a tabular predictive model f∗, to the transformed training set T (Xtr), by
minimizing the loss Lf as shown in Eq.1. Subsequently, we evaluated the LLM-generated feature
transformations T by evaluating the model’s performance on the augmented validation set T (Xval)
(see Eqs. 1 and 2). As explained in Section 3.1, the objective is to find optimal features that maximize
the performance E , i.e., accuracy for classification and error metrics for regression.

3.4 Experience Management

Algorithm 1 LLM-FE
Input: LLM πθ , Dataset D, Metadata M,

Iterations T , Model f , Metric E
1: P0 ← BufferInit()
2: T ∗, s∗ ← null,−∞
3: p← UpdatePrompt(D,M)
4: for t = 1 to T−1 do
5: pt ← p+ Pt−1.topk()
6: {Tj}bj=1 ← πθ(pt)
7: for j = 1 to b do
8: sj ← FeatureScore(f, Tj ,D, E)
9: if sj > s∗ then

10: T ∗, s∗ ← Tj , sj
11: end if
12: Pt ← UpdateBuffer(Pt−1, Tj , sj)
13: end for
14: end for
15: return T ∗, s∗

To promote diverse feature discovery and
avoid stagnation in local optima, LLM-FE
employs evolutionary multi-population experience
management (Figure 1(d)) to store feature discovery
programs in a dedicated database. Then, it uses
samples from this database to construct in-context
examples for LLM, facilitating the generation of
novel features. This step consists of two components:
(i) multi-population memory to maintain a long-
term memory buffer, and (ii) sampling from this
memory buffer to construct in-context example
demonstrations. After evaluating the feature
transforms in iteration t, we store the pair of feature
transforms and score (T , s) in the population buffer
Pt to iteratively refine the search process. To
effectively evolve a population of programs, we
adopt a multi-population model inspired by the
‘island’ model employed by [7, 36, 35]. The program
population is divided into m independent islands, each evolving separately and initialized with a copy
of the user’s initial example (see Figure 6(d)). This enables parallel exploration of the feature space,
mitigating the risk of suboptimal solutions. At each iteration t, we select one of the m islands and
sample programs from the memory buffer to update the prompt with new in-context examples. The
newly generated feature samples b are evaluated, and if their scores sj exceed the current best score,
the feature score pair (Tj , sj) is added to the same island from which the in-context examples were
sampled. To preserve diversity and ensure that programs with different performance characteristics
are maintained in the buffer, we cluster programs within islands based on their signature, defined
by their scores. To build refinement prompts, we follow the sampling process from [35], first
sampling one of the m available islands, followed by sampling the k programs from the selected
island to create k-shot in-context examples for the LLM. Cluster selection prefers high-scoring

5

programs and follows Boltzmann sampling [8] with a score-based probability of choosing a cluster i:
Pi =

exp(si/τc)∑
i exp(si/τc)

, where si denotes the mean score of the i-th cluster and τc is the temperature
parameter. The sampled feature transformation programs from the memory buffer are then included
in the prompt as examples to guide LLM toward successful feature transformations—incurring
negligible computational overhead. Refer to Appendix D.1 for more details.

Algorithm 1 presents the pseudocode of LLM-FE. We begin with the initialization of a memory
buffer BufferInit, incorporating an initial population that contains a simple feature transform.
This initialization serves as the starting point for the evolutionary search for feature transformation
programs to be evolved in the subsequent steps. At each iteration t, the function topk is used to
sample k in-context examples from the population of the previous iteration Pt−1 to update the prompt.
Subsequently, we prompt the LLM using this updated prompt to sample b new programs. The sampled
programs are then evaluated using FeatureScore, which represents the Data-Driven Evaluation
(Section 3.3). After T iterations, the best-scoring program T ∗ from Pt and its corresponding score s∗
are returned as the optimal solution found for the problem. LLM-FE employs an iterative search to
enhance programs, harnessing the LLM’s capabilities. Learning from the evolving pool of experiences
in its buffer, the LLM steers the search toward effective solutions.

4 Experimental Setup

We evaluated LLM-FE on a range of tabular datasets, encompassing classification and regression
tasks. Our experimental analysis included quantitative comparisons with baselines and detailed
ablation studies. Specifically, we assessed our approach using three known tabular predictive models
with distinct architectures: (1) XGBoost, a tree-based model [6], (2) MLP, a neural model [13], and (3)
TabPFN [19], a transformer-based foundation model [38]. The results highlight LLM-FE’s capability
to generate effective features that consistently enhance the performance of different prediction models
across diverse datasets.

4.1 Datasets
We followed [20] to select datasets from [17, 20, 45] that include descriptive feature names and are
not perfectly solvable using XGBoost. Our analysis contains 19 classification and 10 regression
datasets, each containing mixed categorical and numerical features. We also include 8 large-scale,
high-dimensional classification datasets to ensure comprehensive evaluation. These datasets were
sourced from established machine learning repositories, including OpenML [37, 12], UCI Machine
Learning Repository [3], and Kaggle. Each dataset is accompanied by metadata, which includes a
natural language description of the prediction task and descriptive feature names. We partitioned
each dataset into train and test sets using an 80-20 split. Following [20], we evaluated all methods
over five iterations, each time using a distinct random seed and train-test splits. For more details,
check Appendix A.

4.2 Baselines
We evaluated LLM-FE against state-of-the-art feature engineering approaches, including OpenFE [45]
and AutoFeat [21], as well as LLM-based methods CAAFE [20], FeatLLM [17] and OCTree [31].
We used XGBoost as the default tabular data prediction model in comparison with baselines and
employed GPT-3.5-Turbo as the default LLM backbone for all LLM-based methods. To ensure a
fair comparison, all LLM-based baselines were configured to query the LLM backbone for a total
of 20 samples until they converged to their best performance. Appendix B.1 contains additional
implementation details.

4.3 LLM-FE Configuration
In our experiments, we utilized GPT-3.5-Turbo and Llama-3.1-8B-Instruct as backbone LLMs,
with a sampling temperature parameter of t = 0.8 and the number of islands set to m = 3. At
each iteration, the LLM generated b = 3 feature transformation programs per prompt in Python. To
ensure consistency with baselines, LLM-FE was also configured with a total of 20 LLM samples for
each experiment. Finally, we sampled the top m (where m denotes the number of islands) feature
discovery programs based on their respective validation scores and reported the final prediction
through an ensemble. More implementation details are provided in Appendix B.2.

6

Table 2: Performance of XGBoost on Classification Datasets using various Feature Engineering (FE)
Methods, evaluated using accuracy (higher values indicate better performance). We report the mean values
and standard deviation across five splits. ✗ : denotes execution time of greater than 12 hours or failure due to
execution errors. bold: indicates the best performance. underline: indicates the second-best performance. ‘n’:
indicates the number of samples; ‘p’: indicates the number of features.

Dataset n p Base Classical FE Methods LLM-based FE Methods LLM-FE
AutoFeat OpenFE CAAFE FeatLLM OCTree

adult 48.8k 14 0.873 ± 0.002 ✗ 0.873 ± 0.002 0.872 ± 0.002 0.842 ± 0.003 0.870 ± 0.002 0.874 ± 0.003

arrhythmia 452 279 0.657 ± 0.019 ✗ ✗ ✗ ✗ ✗ 0.659 ± 0.018

balance-scale 625 4 0.856 ± 0.020 0.925 ± 0.036 0.986 ± 0.009 0.966 ± 0.029 0.800 ± 0.037 0.882 ± 0.022 0.990 ± 0.013

bank-marketing 45.2k 16 0.906 ± 0.003 ✗ 0.908 ± 0.002 0.907 ± 0.002 0.907 ± 0.002 0.900 ± 0.002 0.907 ± 0.002

breast-w 699 9 0.956 ± 0.012 0.956 ± 0.019 0.956 ± 0.014 0.960 ± 0.009 0.967 ± 0.015 0.969 ± 0.009 0.970 ± 0.009

blood-transfusion 748 4 0.742 ± 0.012 0.738 ± 0.014 0.747 ± 0.025 0.749 ± 0.017 0.771 ± 0.016 0.755 ± 0.026 0.751 ± 0.036

car 1728 6 0.995 ± 0.003 0.998 ± 0.003 0.998 ± 0.003 0.999 ± 0.001 0.808 ± 0.037 0.995 ± 0.004 0.999 ± 0.001

cdc diabetes 253k 21 0.849 ± 0.001 ✗ 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001

cmc 1473 9 0.528 ± 0.029 0.505 ± 0.015 0.517 ± 0.007 0.524 ± 0.016 0.479 ± 0.015 0.525 ± 0.027 0.531 ± 0.015

communities 1.9k 103 0.706 ± 0.016 ✗ 0.704 ± 0.009 0.707 ± 0.013 0.593 ± 0.012 0.708 ± 0.016 0.711 ± 0.012

covtype 581k 54 0.870 ± 0.001 ✗ 0.885 ± 0.007 0.872 ± 0.003 0.554 ± 0.001 0.832 ± 0.002 0.882 ± 0.003

credit-g 1000 20 0.751 ± 0.019 0.757 ± 0.017 0.758 ± 0.017 0.751 ± 0.020 0.707 ± 0.034 0.753 ± 0.021 0.766 ± 0.015

eucalyptus 736 19 0.655 ± 0.024 0.664 ± 0.028 0.663 ± 0.033 0.679 ± 0.024 ✗ 0.658 ± 0.041 0.668 ± 0.027

heart 918 11 0.858 ± 0.013 0.857 ± 0.021 0.854 ± 0.020 0.849 ± 0.023 0.865 ± 0.030 0.852 ± 0.022 0.866 ± 0.021

jungle_chess 44.8k 6 0.869 ± 0.001 ✗ 0.900 ± 0.004 0.901 ± 0.038 0.577 ± 0.002 0.869 ± 0.002 0.969 ± 0.004

myocardial 1.7k 111 0.784 ± 0.023 ✗ 0.787 ± 0.026 0.789 ± 0.023 0.778 ± 0.023 0.787 ± 0.031 0.789 ± 0.023

pc1 1109 21 0.931 ± 0.004 0.931 ± 0.014 0.931 ± 0.009 0.929 ± 0.005 0.933 ± 0.007 0.934 ± 0.007 0.935 ± 0.006

tic-tac-toe 958 9 0.998 ± 0.002 1.000 ± 0.000 0.994 ± 0.006 0.996 ± 0.003 0.653 ± 0.037 0.997 ± 0.003 0.998 ± 0.005

vehicle 846 18 0.754 ± 0.016 0.788 ± 0.018 0.785 ± 0.008 0.771 ± 0.019 0.744 ± 0.035 0.753 ± 0.036 0.761 ± 0.027

Mean Rank 4.26 4.89 3.26 3.31 4.94 3.84 1.47

Table 3: Performance of XGBoost on Regression Datasets using various Feature Engineering (FE) Methods,
evaluated using normalized root mean square error (N-RMSE) (lower values indicate better performance). We
report the mean and standard deviation across five splits. bold: indicates the best performance. underline:
indicates the second-best performance. ‘n’: indicates the number of samples; ‘p’: indicates the number of
features.

Dataset n p Base Classical FE Methods LLM-FE
AutoFeat OpenFE

airfoil_self_noise 1503 6 0.013 ± 0.001 0.012 ± 0.001 0.013 ± 0.001 0.011 ± 0.001
bike 17389 11 0.216 ± 0.005 0.223 ± 0.006 0.216 ± 0.007 0.207 ± 0.006
cpu_small 8192 10 0.034 ± 0.003 0.034 ± 0.002 0.034 ± 0.002 0.033 ± 0.003
crab 3893 8 0.234 ± 0.009 0.228 ± 0.008 0.224 ± 0.001 0.223 ± 0.013
diamonds 53940 9 0.139 ± 0.002 0.140 ± 0.004 0.137 ± 0.002 0.134 ± 0.002
forest-fires 517 13 1.469 ± 0.080 1.468 ± 0.086 1.448 ± 0.113 1.417 ± 0.083
housing 20640 9 0.234 ± 0.009 0.231 ± 0.013 0.224 ± 0.005 0.218 ± 0.009
insurance 1338 7 0.397 ± 0.020 0.384 ± 0.024 0.383 ± 0.022 0.381 ± 0.028
plasma_retinol 315 13 0.390 ± 0.032 0.411 ± 0.036 0.392 ± 0.032 0.388 ± 0.033
wine 4898 10 0.110 ± 0.001 0.109 ± 0.001 0.108 ± 0.001 0.105 ± 0.001

Mean Rank 3.40 3.10 2.20 1.00

5 Results and Discussion

5.1 Performance Comparisons

In Table 2, we compare LLM-FE against various feature engineering baselines across 19 classification
datasets. The results demonstrate that LLM-FE consistently enhances predictive performance from
the base model (using raw data). LLM-FE also obtains the lowest mean rank (best performance) at
a lower computational cost (see Appendix D.1), showing better effectiveness in enhancing feature
discovery compared to other leading baselines. To further evaluate the effectiveness of LLM-FE, we
perform experiments on 10 regression datasets using the same evaluation settings employed for the
classification datasets. Due to the lack of regression data implementations in the available codebases
for LLM-based baselines, in Table 3, we restrict our comparison to only non-LLM methods (OpenFE
and AutoFeat), which have been previously validated on regression tasks. The results indicate
that LLM-FE outperforms all baseline methods, achieving the lowest mean rank and consistently
improving across all datasets.

7

5.2 Generalizability Analysis

Table 4: Performance improvement by LLM-FE
using different prediction models and LLM
backbones. We report the aggregated values for
accuracy on classification tasks and normalized root
mean square error on regression tasks. All results
represent the mean and standard deviation computed
across five splits. bold: indicates the best performance.
TabPFN∗ evaluations are conducted using only 10,000
samples due to its limited processing capacity.

Method LLM Classification ↑ Regression ↓

XGBoost

Base – 0.820 ± 0.020 0.324 ± 0.016

LLM-FE
Llama 3.1-8B 0.832 ± 0.021 0.310 ± 0.022

GPT-3.5 Turbo 0.840 ± 0.022 0.306 ± 0.015

MLP

Base – 0.745 ± 0.034 0.871 ± 0.027

LLM-FE
Llama 3.1-8B 0.768 ± 0.032 0.794 ± 0.016

GPT-3.5 Turbo 0.791 ± 0.029 0.631 ± 0.043

TabPFN∗

Base – 0.852 ± 0.028 0.289 ± 0.016

LLM-FE
Llama 3.1-8B 0.856 ± 0.017 0.288 ± 0.016

GPT-3.5 Turbo 0.863 ± 0.018 0.286 ± 0.015

To evaluate the generalizability of the LLM-FE,
we examine its performance across multiple
tabular prediction models and various LLM
backbones. Specifically, we employ two
LLM backbones, Llama-3.1-8B-Instruct and
GPT-3.5-Turbo, in conjunction with three
distinct tabular prediction models: XGBoost [6],
a widely-used tree-based algorithm for tabular
tasks; Multilayer Perceptron (MLP), a simple yet
common deep-learning architecture tailored to
tabular datasets [13]; and TabPFN [19], a recent
transformer-based foundation model specifically
designed for tabular data. Table 4 summarizes our
findings, demonstrating that LLM-FE effectively
identifies features that enhance the performance
of various prediction models and LLM backbones
across different tasks. Notably, the results indicate
that features generated by LLM-FE using either
LLM backbone consistently improve base model
prediction performance compared to scenarios
without any feature engineering. Detailed analyses
on additional prediction models, hyperparameter
optimization, feature transferability and more are
provided in Appendix C.

6 Analysis

6.1 Ablation Study

Classification Datasets0.55

0.60

0.65

0.70

Ac
cu

ra
cy

0.687

0.644

0.626

0.587

LLM-FE
w/o Data Examples

w/o Domain Knowledge
w/o Evolutionary Refinement

Figure 2: Aggregated ablation study results across
classification datasets, showcasing the impact of
individual components on LLM-FE’s performance:
(a) Data Examples, (b) Domain Knowledge, and (c)
Evolutionary Refinement. Values are normalized with
respect to the base LLM-FE model to facilitate fair
comparison across conditions.

We perform an ablation study on the classification
datasets (<10,000 samples) listed in Table 2 to
assess the contribution of each component in
LLM-FE. Figure 2 illustrates the impact of
individual components on overall performance,
using XGBoost and GPT-3.5-Turbo. We report
the accuracy aggregated and normalized over all
the datasets. In the ‘w/o Domain Knowledge’
setting, dataset and task-specific details are
removed from the prompt and feature names are
anonymized with generic placeholders such as
C1, C2,. . . , Cn. In this way, we remove any
semantic meaning that could provide contextual
insights about the problem. Without domain
knowledge, the performance significantly drops to
0.626, underscoring its critical role in generating
meaningful features. The ‘w/o Evolutionary
Refinement’ setting) also leads to the greatest
decline in performance (0.587), emphasizing the
importance of iterative data-driven feedback in
addition to domain knowledge for refining feature
transforms. Lastly, the results show that ‘w/o Data Examples’ variant leads to only a slight
performance drop, as LLMs might struggle to comprehend the nuances and patterns within the data
samples. LLM-FE benefits significantly from each component, leading to an improved performance.

8

 def modify_features(df_input) -> pd.DataFrame:
 """

 Thought 1: Insulin levels in conjunction with Glucose levels can provide
insights into the metabolic state.

 Feature 1: insulin_glucose_ratio |

 insulin_glucose_ratio = Insulin / Glucose
 Thought 2: BMI can be an indicator of potential diabetes risk, especially

when combined with age.
 Feature 2: bmi_age_ratio | bmi_age_ratio = BMI / Age
 """
 df_output = df_input.copy()

 # Calculate Insulin divided by Glucose
 df_output['insulin_glucose_ratio'] = df_output['Insulin'] /

 df_output['Glucose']
 # Calculate BMI divided by Age
 df_output['bmi_age_ratio'] = df_output['BMI'] / df_output['Age']

 return df_output

(b) LLM-FE(a) Feature Engineering without domain knowledge

 def modify_features(df_input) -> pd.DataFrame:
 """
 Introducing a new feature 'C10' as the square root of the
 product of 'C1' and 'C3' to capture a non-linear relationship
 between these variables.
 Additionally, dropping less informative feature 'C2'.
 """
 df_output = df_input.copy()

 df_output['C10'] = np.sqrt(df_output['C1'] * df_output['C3'])
 df_output.drop('C2', axis=1, inplace=True)

 return df_output

Figure 3: Qualitative Analysis on Impact of Domain Knowledge. illustrating how LLM-FE (b) utilizes
domain knowledge to create meaningful features with descriptions , in contrast to feature engineering without

domain insights (a) leading to uninterpretable outputs.

0.730

0.735

0.740

0.745

Ac
cu

ra
cy

Model Performance

Base LLM-FE w/o domain knowledge LLM-FE

Figure 4: Quantitative impact of domain
knowledge on model accuracy. Using domain
knowledge boosts performance compared to both the
base model and LLM-FE without domain knowledge.

0 5 10 15 20
Iterations

0.750

0.755

0.760

0.765

Ac
cu

ra
cy

Validation Accuracy
LLM-FE w/o Evolutionary Refinement LLM-FE

Figure 5: Performance Trajectory Analysis. for
LLM-FE w/o evolutionary refinement and LLM-FE.
LLM-FE demonstrates a better trajectory, highlighting
the advantage of evolutionary refinement.

6.2 Impact of Domain Knowledge and Evolutionary Refinement

Figure 3 illustrates the qualitative benefits of incorporating domain knowledge into feature engineering.
In this example, two approaches are contrasted: one without domain knowledge (Figure 3(a)), and
LLM-FE guided by domain-specific insights through an LLM-based feature engineering (Figure 3(b)).
The domain-agnostic variant creates arbitrary transformations, such as combining features C1 and C3
using a square root of their product and dropping feature C2 without clear justification. In contrast,
LLM-FE leverages its embedded knowledge to derive interpretable and clinically meaningful features.
Figure 4 presents a quantitative comparison of model performance on the same dataset, showing
that LLM-FE with domain knowledge achieves the highest accuracy, outperforming both the base
model and LLM-FE without domain knowledge. Figure 5 illustrates the validation accuracy trajectory
of LLM-FE with and without evolutionary refinement across 20 iterations. The variant without
refinement shows early improvement but quickly plateaus, indicating convergence to a local optimum.
In contrast, LLM-FE continues to improve across iterations, achieving higher accuracy overall. This
comparison highlights the effectiveness of evolutionary refinement in enhancing performance by
enabling the model to escape local optima and optimize more effectively. For detailed analysis on
more datasets, feature quality, and computational efficiency, see Appendix D.

7 Conclusion

In this work, we introduce a novel framework LLM-FE that leverages LLMs as evolutionary
optimizers to discover new features for tabular prediction tasks. By combining LLM-driven hypothesis
generation with data-driven feedback and evolutionary search, LLM-FE effectively automates the
feature engineering process. Through comprehensive experiments on diverse tabular learning

9

tasks, we demonstrate that LLM-FE consistently outperforms state-of-the-art baselines, delivering
substantial improvements in predictive performance across various tabular prediction models. Future
work could explore integrating more powerful or domain-specific language models to enhance the
relevance and quality of generated features for domain-specific problems. Moreover, our framework
could extend beyond feature engineering to other stages of the tabular learning and data-centric
pipeline, such as data augmentation, automated data cleaning (including imputation and outlier
detection), and model tuning.

Acknowledgments

This research was partially supported by the U.S. National Science Foundation (NSF) under Grant
No. 2416728.

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 2623–2631,
2019.

[2] Anaconda. The state of data science 2020. Website, 2020.

[3] Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[5] Angelica Chen, David Dohan, and David So. Evoprompting: language models for code-level
neural architecture search. Advances in Neural Information Processing Systems, 36, 2024.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[7] Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

[8] Michael De La Maza and Bruce Tidor. Increased flexibility in genetic algorithms: The use
of variable boltzmann selective pressure to control propagation. In Computer Science and
Operations Research, pages 425–440. Elsevier, 1992.

[9] Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for
non-language machine learning tasks. Advances in Neural Information Processing Systems,
35:11763–11784, 2022.

[10] Pedro Domingos. A few useful things to know about machine learning. Communications of the
ACM, 55(10):78–87, 2012.

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[12] Matthias Feurer, Jan N Van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya
Ravi, Andreas Müller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible
python api for openml. Journal of Machine Learning Research, 22(100):1–5, 2021.

[13] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems, 34:18932–
18943, 2021.

[14] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? Advances in neural information processing
systems, 35:507–520, 2022.

10

[15] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang
Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms yields
powerful prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

[16] Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach
themselves to program better. arXiv preprint arXiv:2207.14502, 2022.

[17] Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
automatically engineer features for few-shot tabular learning. arXiv preprint arXiv:2404.09491,
2024.

[18] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David Sontag. Tabllm: Few-shot classification of tabular data with large language models. In
International Conference on Artificial Intelligence and Statistics, pages 5549–5581. PMLR,
2023.

[19] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A
transformer that solves small tabular classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

[20] Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated
data science: Introducing caafe for context-aware automated feature engineering. Advances in
Neural Information Processing Systems, 36, 2024.

[21] Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated
feature engineering and selection. In Machine Learning and Knowledge Discovery in Databases:
International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part I, pages 111–120. Springer, 2020.

[22] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating
data science endeavors. In 2015 IEEE international conference on data science and advanced
analytics (DSAA), pages 1–10. IEEE, 2015.

[23] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive
modeling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[24] Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito:
Automated feature engineering for supervised learning. In 2016 IEEE 16th international
conference on data mining workshops (ICDMW), pages 1304–1307. IEEE, 2016.

[25] Jaris Küken, Lennart Purucker, and Frank Hutter. Large language models engineer too many
simple features for tabular data. arXiv preprint arXiv:2410.17787, 2024.

[26] Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages
579–582, 2024.

[27] Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O
Stanley. Evolution through large models. In Handbook of Evolutionary Machine Learning,
pages 331–366. Springer, 2023.

[28] Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. arXiv preprint arXiv:2402.03921, 2024.

[29] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

[30] Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover,
and Joel Lehman. Language model crossover: Variation through few-shot prompting. ACM
Transactions on Evolutionary Learning, 4(4):1–40, 2024.

[31] Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin.
Optimized feature generation for tabular data via llms with decision tree reasoning. arXiv
preprint arXiv:2406.08527, 2024.

[32] Jaehyun Nam, Jihoon Tack, Kyungmin Lee, Hankook Lee, and Jinwoo Shin. Stunt:
Few-shot tabular learning with self-generated tasks from unlabeled tables. arXiv preprint
arXiv:2303.00918, 2023.

11

[33] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.
Learning feature engineering for classification. In Ijcai, volume 17, pages 2529–2535, 2017.

[34] R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

[35] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

[36] Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K
Reddy. Llm-sr: Scientific equation discovery via programming with large language models.
arXiv preprint arXiv:2404.18400, 2024.

[37] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science
in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[38] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[39] Zifeng Wang, Chufan Gao, Cao Xiao, and Jimeng Sun. Anypredict: Foundation model for
tabular prediction. CoRR, 2023.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[41] Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary
computation in the era of large language model: Survey and roadmap. arXiv preprint
arXiv:2401.10034, 2024.

[42] Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Z Chen, Jimeng Sun, Jian Wu, and
Jintai Chen. Making pre-trained language models great on tabular prediction. arXiv preprint
arXiv:2403.01841, 2024.

[43] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024.

[44] Jianyu Zhang, Jianye Hao, Françoise Fogelman-Soulié, and Zan Wang. Automatic feature
engineering by deep reinforcement learning. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, pages 2312–2314, 2019.

[45] Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei
Cao, and Li Jian. Openfe: automated feature generation with expert-level performance. In
International Conference on Machine Learning, pages 41880–41901. PMLR, 2023.

[46] Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

[47] Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and
Hanjun Dai. Large language models can learn rules. arXiv preprint arXiv:2310.07064, 2023.

Impact Statement

The introduction of LLM-FE as a framework for leveraging LLMs in automated feature engineering
has the potential to significantly impact the field of machine learning by improving predictive
performance and reducing the manual effort involved in feature generation. This is particularly
beneficial in resource-intensive domains, where efficient feature extraction and transformation are
crucial for accelerating model development. By combining domain expertise with evolutionary
optimization, LLM-FE improves over existing methods, which often struggle to identify optimal
feature representations. While LLM-FE currently targets feature engineering, its potential extends to
broader data-centric AI applications. Future extensions could include automated data cleaning (such
as imputation and outlier detection), exploratory data analysis (with techniques like clustering or
dimensionality reduction), and data augmentation, further strengthening the quality and robustness of
training datasets. Moreover, LLM-FE could be adapted to support model tuning and hyperparameter
optimization, contributing to a more streamlined and interpretable machine learning pipeline, and
improving overall model generalization.

12

Reproducibility Statement

To ensure the reproducibility of our work, we provide comprehensive implementation details of LLM-
FE. Section 3 outlines the full methodology, while Appendix B.2 offers an in-depth description of the
framework, including the specific LLM prompts used. The datasets employed in our experiments are
also detailed in Appendix A. Additionally, we release our code and data at this to facilitate further
research.

A Dataset Details

Table 5 describes the diverse collection of datasets spanning three major categories: (1) binary
classification, (2) multi-class classification, and (3) regression problems used in our evaluation.
The datasets were primarily sourced from established platforms, including OpenML [37, 12], UCI
[3], and Kaggle. We specifically selected datasets with descriptive feature names, excluding those
with merely numerical identifiers. Each dataset includes a task description, enhancing contextual
understanding for users. Our selection encompasses not only small datasets but also larger ones,
featuring extensive data samples and high-dimensional datasets with over 50 features. This diverse
and comprehensive selection of datasets represents a broad spectrum of real-world scenarios, varying
in both feature dimensionality and sample size, thereby providing a robust framework for evaluating
feature engineering works.

Table 5: Dataset statistics.

Dataset #Features #Samples Source ID/Name

Binary Classification

adult 14 48842 OpenML 1590
blood-transfusion 4 748 OpenML 1464
bank-marketing 16 45211 OpenML 1461
breast-w 9 699 OpenML 15
credit-g 20 1000 OpenML 31
tic-tac-toe 9 958 OpenML 50
pc1 21 1109 OpenML 1068
pima-indian-diabetes 8 768 OpenML 43582

Multi-class Classification

arrhythmia 279 452 OpenML 5
balance-scale 4 625 OpenML 11
car 6 1728 OpenML 40975
cmc 9 1473 OpenML 23
eucalyptus 19 736 OpenML 188
jungle_chess 6 44819 OpenML 41027
vehicle 18 846 OpenML 54
cdc diabetes 21 253680 Kaggle diabetes-health-indicators-dataset
heart 11 918 Kaggle heart-failure-prediction
communities 103 1994 UCI communities-and-crime
myocardial 111 1700 UCI myocardial-infarction-complications

Regression

airfoil_self_noise 6 1503 OpenML 44957
cpu_small 12 8192 OpenML 562
diamonds 9 53940 OpenML 42225
plasma_retinol 13 315 OpenML 511
forest-fires 13 517 OpenML 42363
housing 9 20640 OpenML 43996
crab 8 3893 Kaggle crab-age-prediction
insurance 7 1338 Kaggle us-health-insurancedataset
bike 11 17389 UCI bike-sharing-dataset
wine 10 4898 UCI wine-quality

13

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://archive.ics.uci.edu/dataset/183/communities+and+crime
https://archive.ics.uci.edu/dataset/579/myocardial+infarction+complications
https://www.kaggle.com/datasets/sidhus/crab-age-prediction
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://archive.ics.uci.edu/dataset/186/wine+quality

B Implementation Details

B.1 Baselines

We implement and evaluate various state-of-the-art feature engineering baselines, spanning traditional
methods to recent LLM-based approaches, for comparison with LLM-FE. After generating features
with each baseline, we apply a unified preprocessing pipeline to prepare the data for training and
evaluation in the machine learning model. We implement the following baselines:

AutoFeat. AutoFeat is a classical feature engineering approach that uses iterative feature
subsampling with beam search to select informative features. We utilize the open-source autofeat1

package, retaining the default parameter settings. For parameter settings, we refer to the example
‘.ipynb’ files provided in their official repository.

OpenFE. OpenFE is another state-of-the-art traditional feature engineering method using feature
boosting and pruning algorithms. We employ the open-source openfe2 package with standard
parameter settings.

FeatLLM. FeatLLM uses an LLM to generate rules to binarize features that are then used as input
to a simple model, such as linear regression. We adapt the open-source featllm3 implementation,
modifying the pipeline to use an XGBoost model for inference. To ensure a fair comparison with
other methods, we provide the entire training dataset to train the XGBoost model while using only
a subset of the dataset (10 samples) to the LLM to generate binary features. We report the results
through an ensemble over three samples to maintain consistency with LLM-FE.

CAAFE. We utilize the official implementation of CAAFE,4, maintaining all parameter settings as
specified in the original repository. Following their workflow, we preprocess the data using their
pipeline before inputting it into the prediction model after the feature engineering process.

OCTree. The official OCTree implementation5 was modified to keep the data loading and model
initialization part common. We implemented OCTree only for classification datasets, as the official
implementation is limited to classification datasets, and running for regression datasets on our own
could have resulted in incorrect implementation.

B.2 LLM-FE

Feature Generation. Figure 6 presents an example prompt for the balance-scale dataset. The
prompt begins with general instructions, followed by dataset-specific details, such as task descriptions,
feature descriptions, and a subset of data instances serialized and expressed in natural language. To
introduce diversity in prompting, we randomly sample between this approach and an alternative set
of instructions, encouraging the LLM to explore a wider range of operators from OpenFE [45], as
prior LLMs tend to favor simpler operators [25] (see Figure 7). The quality of features generated
has been detailed in Appendix D.2. By providing this structured context, the model can leverage its
domain knowledge to generate semantically and contextually meaningful hypotheses for new feature
optimization programs.

Data-Driven Evaluation. After prompting the LLM, we sample b = 3 outputs. Based on
preliminary experiments, we set the temperature for LLM output generation to t = 0.8 to balance
creativity (exploration) and adherence to problem constraints, as well as reliance on prior knowledge
(exploitation). The data modification process is illustrated in Figure 6(c), where the outputs are used
to modify the features via modify_features(input). These modified features are then input into a
prediction model, and the resulting validation score is calculated. To ensure efficiency, our evaluation
is constrained by time and memory limits set at T = 30 seconds and M = 2GB, respectively.

1https://github.com/cod3licious/autofeat.git
2https://github.com/IIIS-Li-Group/OpenFE.git
3https://github.com/Sungwon-Han/FeatLLM
4https://github.com/noahho/CAAFE
5https://github.com/jaehyun513/OCTree

14

https://github.com/cod3licious/autofeat.git
https://github.com/IIIS-Li-Group/OpenFE.git
https://github.com/Sungwon-Han/FeatLLM
https://github.com/noahho/CAAFE
https://github.com/jaehyun513/OCTree

Programs exceeding these limits are disqualified and assigned None scores, ensuring timely progress
and resource efficiency in the search process.

Memory Management. Following the ‘islands’ model used by [7, 36, 35], we maintain the
generated hypotheses along with their evaluation scores in a memory buffer comprising multiple
islands (m = 3) that evolve independently. Each island is initialized with a basic feature
transformation program specific to the dataset. Each island is initialized with a simple feature
transformation program specific to the dataset (def modify_features_v0()in Figure 6(d)). In
each iteration, novel hypotheses and their validation metrics are incorporated into their respective
islands only if they exceed the island’s current best score. Within each island, we additionally cluster
feature discovery programs based on their signature, characterized by their validation score. Feature
transformation programs that produce identical scores are consolidated together, creating distinct
clusters. This clustering approach helps preserve diversity by ensuring that programs with varying
performance characteristics remain in the population. We leverage this island model to construct
prompts for the LLM. After an initial update of the prompt template with dataset-specific information,
we integrate in-context demonstrations from the buffer. Following [36, 35], we randomly select
one of the m available islands. Within the chosen island, we sample k = 2 programs to serve as
in-context examples. To sample programs, we first select clusters based on their signatures using the
Boltzmann selection strategy [8] to sample clusters based on their signatures with a preference for
clusters with higher scores. Let si be the score of the i-th cluster, and the probability Pi for selecting
the i-th cluster is given as:

Pi =
exp(siτc)∑

i(
si
τc
)
, where τc = T0(1−

u mod N

N
) (4)

where τc is the temperature parameter, u is the current number of programs on the island, and
T0 = 0.1 and N = 10, 000 are hyperparameters. Once a cluster is selected, we sample the programs
from it.

C Additional Results

C.1 Transferability of Generated Features

While traditional approaches typically use the same model for both feature generation and inference,
we demonstrate that the features generated by one model can be utilized by other models. Following
[31], we use XGBoost, a computationally efficient decision tree-based model, to generate features to
be used by more complex architectures for inference. As demonstrated in Table 6, XGBoost-generated
features show an improvement in the performance of MLP and TabPFN over their base versions. This
cross-architecture performance improvement suggests that the generated features capture meaningful
data characteristics that are valuable across different modeling paradigms.

Table 6: Comparative analysis of LLM-FE using feature transfer. We use XGBoost to perform feature
engineering and apply these features to MLP and TabPFN (indicated as LLM-FE XGB). We report the accuracy
for classification tasks and the normalized root mean square error for regression tasks. We report the mean and
standard deviation across five random splits. bold: indicates the best performance.

Method LLM Classification ↑ Regression ↓
MLP

Base – 0.745 ± 0.034 0.871 ± 0.027

LLM-FEXGB GPT-3.5-Turbo 0.763 ± 0.030 0.848 ± 0.017

LLM-FE GPT-3.5-Turbo 0.791 ± 0.029 0.631 ± 0.043

TabPFN

Base – 0.852 ± 0.028 0.289 ± 0.016

LLM-FEXGB GPT-3.5-Turbo 0.861 ± 0.017 0.287 ± 0.015

LLM-FE GPT-3.5-Turbo 0.863 ± 0.018 0.286 ± 0.015

15

###
<Role>

You are a data scientist expert in the field of the given dataset.
Your role is to apply your domain expertise to identify and create, and refine the most informative features

that solve the <Task> effectively.

###

<Instructions>
- You are provided with the task description, a list of existing features, and data examples.

- Use your domain knowledge to derive features that capture meaningful patterns, trends, or relationships
inherent in the data.
- Prioritize features that have high potential to enhance the model’s ability to solve the <Task>, considering

both relevance and predictive power.
- For each derived feature, provide:
- A clear explanation of how it was derived and justification of its relevance for solving the <Task>.

- Ensure your approach remains grounded in the context of the dataset and the <Task>, and aim for features
that are interpretable and actionable.

###
<Task>

Which direction does the balance scale tip to? Right, left, or balanced?

###
<Features>

- Left-Weight: Left-Weight (numerical variable within range [1, 5])
....

....

###

<Examples>
If Left-Weight is 3, Left-Distance is 3, Right-Weight is 4, Right-Distance is 5, Then Result is right.

....

....

Please generate as many new features as possible using the information from the task, feature descriptions,
examples, and your domain understanding of the dataset. Remove any irrelevant, redundant, or less informative
features to enhance overall performance.

First, describe your new feature transformation and the main steps in a concise, one-sentence docstring.Then,

implement it in Python as a function that adheres to the given specifications.
Avoid providing any further explanations or additional descriptions.

def modify_features_v0(df_input) -> pd.DataFrame:

 """

 Thought 1: The absolute difference between Left-Weight and Right-Weight can

 capture the imbalance in weight distribution.

 Feature 1: weight_difference | weight_difference = abs(Left-Weight - Right-Weight)
 """

 df_output = df_input.copy()

 # Calculate absolute difference between Left-Weight and Right-Weight

 df_output['weight_difference'] =

 abs(df_output['Left-Weight'] - df_output['Right-Weight'])

 return df_output

Instruction

Dataset Specification

In-Context Example

def modify_features_v1(df_input) -> pd.DataFrame:

 """Improved version of modify_features_v0""" Function to Complete

def evaluate(data: dict):

 """ Evaluate the feature transformations on data observations."""

 import torch

 import utils

 from sklearn.model_selection import train_test_split

 from sklearn.metrics import accuracy_score

 from sklearn import preprocessing

 import xgboost as xgb

 #Data Loading and Processing

 # Load model

 model = xgb.XGBClassifier(random_state=42)

 # Training

 model.fit(X_train, y_train)

 # Inference

 y_pred = model.predict(X_test)

 score = accuracy_score(y_test, y_pred)

 return score, inputs, outputs Evaluation Function

 # Load data observations

 label_encoder = preprocessing.LabelEncoder()

 # Load data observations

 inputs, outputs = data['inputs'], data['outputs']

 X = modify_features(inputs)

 y = label_encoder.fit_transform(outputs)

 for col in X.columns:

 if X[col].dtype == 'string':

 X[col] = label_encoder.fit_transform(X[col])

 # Split the data

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.25, random_state=0)

 # Data Processing

 X_train = utils.make_numeric(X_train)

 X_test = utils.make_numeric(X_test)

 X_train = torch.tensor(X_train.to_numpy())

 X_test = torch.tensor(X_test.to_numpy())

Figure 6: Example of an input prompt for balance-scale dataset containing (a) instruction, (b) dataset
specification containing the details about the task, features, and data samples, (c) evaluation function, (d) initial
in-context demonstration, and (e) function to complete.

16

###

<Role>
You are a data scientist with expert knowledge about the provided dataset.

Your primary responsibility is to identify the most informative features that can enhance the solution to the
specified <Task>.

###
<Instructions>

 - You are given a task description, a list of existing features, a set of advanced operators, and sample
data.
 - Your objective is to leverage the provided advanced operators within <Operators> to generate meaningful

and insightful features that enhance task performance. These operators have been carefully curated to extract
deeper patterns from the data.

 - Avoid relying on basic arithmetic operators (e.g., addition, subtraction, multiplication, or division).
Instead, focus exclusively on the provided advanced operators inside <Operators>.
 - For each feature you derive, provide a concise explanation of why it is relevant and to solving the <Task>

in the docstring.

###

<Operators>
 - General Operators: Frequency (Frequency of feature in the data)

 - Numerical Input Operators: Absolute, Logarithm, Square Root, Sigmoid, Square, Round, Residual
 - Numeric-Numeric Operators: Minimum, Maximum
 - Categorical-Numeric Operators: GroupByThenMin, GroupByThenMax, GroupByThenMean, GroupByThenMedian,

GroupByThenStd, GroupByThenRank
 - Categorical-Categorical Operators: Combine, CombineThenFreq, GroupByThenNUnique

Instruction

Figure 7: An example of the alternate set of instructions used to direct the model to use a complex set of
operations over simple operators for generating features.

C.2 LLM-FE and Hyperparameter Optimization (HPO)

To assess hyperparameter optimization (HPO) effectiveness, we establish a comprehensive search
space for our baseline models and employ the Optuna library [1] for tuning. Our methodology
incorporates 400 trials with random sampling across multiple dataset splits. We concentrate our
analysis on five classification datasets where baseline models achieve accuracies below 0.8. Table 7
demonstrates that HPO consistently enhances performance across all evaluated datasets for the Base
model. Significantly, our proposed method LLM-FE delivers additional performance improvements
even in the HPO-optimized setting. These findings confirm that while HPO provides meaningful
performance gains, LLM-FE offers complementary and substantial enhancements, reinforcing its
effectiveness as a feature engineering approach independent of hyperparameter tuning benefits.

Table 7: Comparison of XGBoost classification accuracy across datasets using Base and LLM-FE models,
evaluated under (a) without hyperparameter optimization (HPO) and (b) with HPO.

Dataset w/o HPO w/ HPO

Base LLM-FE Base LLM-FE

eucalyptus 0.655 ± 0.024 0.668 ± 0.027 0.659 ± 0.022 0.678 ± 0.020

credit-g 0.751 ± 0.019 0.766 ± 0.025 0.761 ± 0.022 0.784 ± 0.017

cmc 0.528 ± 0.030 0.531 ± 0.015 0.554 ± 0.026 0.578 ± 0.021

blood-transfusion 0.674 ± 0.017 0.782 ± 0.017 0.777 ± 0.021 0.805 ± 0.009

vehicle 0.754 ± 0.016 0.761 ± 0.027 0.776 ± 0.035 0.801 ± 0.033

C.3 Additional Results

We extend the results from Section 5, showcasing the performance improvements achieved by
LLM-FE across various prediction models. Specifically, we employ XGBoost, MLP, and TabPFN
to generate features and subsequently use the same models for inference. As shown in Table 8,
the features using GPT-3.5-Turbo by LLM-FE consistently enhance model performance across
different datasets, outperforming the base versions trained without feature engineering. To further
assess the generalizability of LLM-FE, we conducted experiments on smaller prediction models
like CatBoost and Logistic Regression. From Table 9 that LLM-FE outperforms the respective base
models for most of the datasets.

17

Table 8: Performance improvement with LLM-FE. We report the mean and standard deviation over five
splits. We use Normalized Root Mean Square Error for all regression datasets, with a lower value indicating
better performance, and Accuracy for classification datasets, with a higher value indicating better performance.
bold: indicates the best performance.

Dataset XGBoost MLP TabPFN

Base LLM-FE Base LLM-FE Base LLM-FE

Classification Datasets

balance-scale 0.856 ± 0.020 0.990 ± 0.013 0.933 ± 0.008 0.997 ± 0.004 0.970 ± 0.016 1.000 ± 0.000

breast-w 0.956 ± 0.012 0.970 ± 0.009 0.957 ± 0.010 0.964 ± 0.005 0.971 ± 0.006 0.971 ± 0.007

blood-transfusion 0.742 ± 0.012 0.751 ± 0.036 0.674 ± 0.071 0.782 ± 0.017 0.790 ± 0.012 0.791 ± 0.011

car 0.995 ± 0.003 0.999 ± 0.001 0.929 ± 0.019 0.950 ± 0.009 0.984 ± 0.007 0.996 ± 0.006

cmc 0.528 ± 0.030 0.531 ± 0.015 0.559 ± 0.028 0.566 ± 0.028 0.563 ± 0.030 0.566 ± 0.036

credit-g 0.751 ± 0.019 0.766 ± 0.025 0.558 ± 0.144 0.633 ± 0.101 0.728 ± 0.008 0.794 ± 0.022

eucalyptus 0.655 ± 0.024 0.668 ± 0.027 0.414 ± 0.064 0.456 ± 0.062 0.712 ± 0.016 0.715 ± 0.021

heart 0.858 ± 0.013 0.866 ± 0.021 0.840 ± 0.010 0.844 ± 0.006 0.882 ± 0.025 0.880 ± 0.021

pc1 0.931 ± 0.004 0.935 ± 0.006 0.931 ± 0.002 0.904 ± 0.055 0.936 ± 0.007 0.937 ± 0.003

tic-tac-toe 0.998 ± 0.004 0.998 ± 0.005 0.816 ± 0.029 0.854 ± 0.052 0.984 ± 0.005 0.986 ± 0.009

vehicle 0.754 ± 0.016 0.761 ± 0.027 0.583 ± 0.062 0.673 ± 0.043 0.852 ± 0.016 0.856 ± 0.028

Regression Datasets

airfoil_self_noise 0.013 ± 0.001 0.011 ± 0.001 0.275 ± 0.008 0.108 ± 0.001 0.008 ± 0.001 0.007 ± 0.001

bike 0.216 ± 0.005 0.207 ± 0.005 0.636 ± 0.015 0.551 ± 0.022 0.200 ± 0.005 0.199 ± 0.006

cpu_small 0.034 ± 0.003 0.033 ± 0.003 3.793 ± 0.731 2.360 ± 1.263 0.036 ± 0.001 0.035 ± 0.001

crab 0.234 ± 0.009 0.223 ± 0.014 0.214 ± 0.010 0.212 ± 0.011 0.208 ± 0.013 0.207 ± 0.014

diamond 0.139 ± 0.002 0.134 ± 0.002 0.296 ± 0.018 0.265 ± 0.011 0.132 ± 0.005 0.130 ± 0.005

forest-fires 1.469 ± 0.080 1.417 ± 0.083 1.423 ± 0.104 1.344 ± 0.091 1.270 ± 0.101 1.269 ± 0.114

housing 0.234 ± 0.009 0.218 ± 0.009 0.505 ± 0.009 0.444 ± 0.036 0.210 ± 0.004 0.202 ± 0.003

insurance 0.397 ± 0.144 0.381 ± 0.142 0.896 ± 0.053 0.487 ± 0.026 0.351 ± 0.018 0.346 ± 0.020

plasma_retinol 0.390 ± 0.032 0.388 ± 0.033 0.440 ± 0.070 0.411 ± 0.053 0.348 ± 0.048 0.348 ± 0.055

wine 0.110 ± 0.001 0.105 ± 0.001 0.125 ± 0.001 0.125 ± 0.013 0.117 ± 0.004 0.116 ± 0.004

Table 9: Performance improvement with LLM-FE on CatBoost and Logistic Regression. We report the
mean and standard deviation over five splits. We use Accuracy for classification datasets, with a higher value
indicating better performance. bold: indicates the best performance.

Dataset Logistic Regression CatBoost

Base LLM-FE Base LLM-FE

balance-scale 0.874 ± 0.024 0.994 ± 0.012 0.870 ± 0.020 1.000 ± 0.000
breast-w 0.955 ± 0.014 0.962 ± 0.008 0.957 ± 0.009 0.962 ± 0.008
blood-transfusion 0.799 ± 0.014 0.799 ± 0.009 0.742 ± 0.012 0.751 ± 0.036
car 0.690 ± 0.017 0.696 ± 0.031 0.999 ± 0.001 0.999 ± 0.001
cmc 0.520 ± 0.019 0.525 ± 0.012 0.518 ± 0.028 0.548 ± 0.027
credit-g 0.764 ± 0.006 0.780 ± 0.015 0.714 ± 0.046 0.700 ± 0.021
eucalyptus 0.671 ± 0.036 0.667 ± 0.042 0.436 ± 0.027 0.509 ± 0.050
heart 0.877 ± 0.021 0.872 ± 0.025 0.845 ± 0.015 0.839 ± 0.018
pc1 0.931 ± 0.003 0.935 ± 0.003 0.929 ± 0.005 0.932 ± 0.012
tic-tac-toe 0.997 ± 0.004 0.996 ± 0.005 0.673 ± 0.027 0.747 ± 0.152
vehicle 0.772 ± 0.028 0.769 ± 0.015 0.719 ± 0.045 0.725 ± 0.033

C.4 Robustness to Noise

Noise is an inherent challenge in real-world data, arising from various sources, including sensor
errors, human mistakes, environmental factors, and equipment limitations. Such noise can mask
underlying patterns and impair machine learning models’ ability to learn true relationships in the data.
To evaluate how effectively LLM-FE leverages prior knowledge and evolutionary search to handle
noisy data, we introduced Gaussian noise (σ = 0, 0.01, 0.05, 0.1) into numerical classification datasets.
As shown in Figure 8, we compared XGBoost’s performance across different feature engineering
approaches, using GPT-3.5-Turbo as the LLM backbone for both the LLM-based approaches. The
results demonstrate that LLM-FE maintains superior accuracy and robustness even under increasing
noise conditions.

18

0.0 0.01 0.05 0.1
Noise Level ()

0.85

0.87

0.89

0.91

Ac
cu

ra
cy

Base OpenFE CAAFE LLM-FE

Figure 8: Impact of Noise Levels on XGBoost model performance across different feature engineering
approaches, under increasing noise conditions (σ = 0.0 to 0.1). We report the mean accuracy across six
classification datasets containing only numerical features.

D Qualitative Analysis

D.1 Computational Efficiency

0 100 200 300 400 500 600 700
Time (seconds)

0.83

0.84

0.85

0.86

Pe
rfo

rm
an

ce
Pareto Plot: Time vs Performance

base openfe caafe octree llm-fe

Figure 9: Pareto Plot: comparing trade-off between
performance (accuracy) vs time (in seconds) for
LLM-FE and other feature engineering baselines.

Automated feature engineering methods, both
classical and LLM-based, universally employ
model training and validation to evaluate feature
relevance. This evaluation strategy represents
standard methodology across all automated
feature engineering approaches rather than an
additional computational burden specific to
LLM-FE. We conduct our efficiency-performance
trade-off analysis on the datasets with higher
sample counts from Section 5, as these datasets
present greater complexity with their substantial
number of samples and features. Our comparative
Pareto analysis (Figure 9) presents the base
model alongside various feature engineering
baselines. Our proposed method, LLM-FE,
demonstrates Pareto optimality by achieving
superior performance with substantially reduced
computational requirements compared to existing
methods, which either exhibit longer execution
times or yield inferior performance metrics on these datasets. Only the base method requires less
computation time than LLM-FE, but at a significant performance cost. This positions LLM-FE
as the optimal solution in the efficiency-performance space, delivering state-of-the-art results with
reasonable computational demands even when handling datasets of considerable complexity.

D.2 Complexity of Generated Features

Despite a tendency of LLMs to prefer simpler operators [25] (e.g., addition, subtraction, absolute
value), resulting in a less diverse feature set compared to specialized feature-engineering tools,
LLM-FE demonstrates the valuable capability of identifying certain complex and informative
transformations that are rarely generated by conventional LLM-based automated methods.
Specifically, complex operators like groupbythenmean, groupbythenmin, groupbythenmax,
residual, and sigmoid are also recommended frequently by LLM-FE, as illustrated in Figure 10.
Such complex operations have the potential to capture meaningful patterns involving group-based
aggregation that simpler transformations may miss. Thus, while further refinement is needed to
balance operator selection, the ability of LLM-FE to discover nuanced, aggregation-based features
emphasizes its promising role as a complementary technique in the broader automated feature
engineering toolkit.

19

abs add divide multiply subtract residual sigmoid groupby
thenmax

log groupby
thenmin

min groupby
thenmean

Operator

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y

LLM-FE w/o LLM-FE

Figure 10: Frequency of Feature Engineering Operators. We compare the operators for LLM-FE with simple
LLM-based methods.

D.3 Impact of Domain Knowledge

 def modify_features(df_input) -> pd.DataFrame:
 """
 Thought: Taking the logarithm of serum cholesterol
 may help normalize the distribution and
 emphasize the impact of extreme values.

 Feature: Log_Cholesterol | Log_Cholesterol =
 Logarithm(Cholesterol)
 """

 df_output = df_input.copy()

 # Calculate Log_Cholesterol
 df_output['Log_Cholesterol'] =
 df_output['Cholesterol'].apply(lambda x:
 np.log(x) if x > 0 else 0)

 return df_output

 def modify_features(df_input) -> pd.DataFrame:
 """
 Thought: Considering the importance of categorical variables in
 the prediction task.
 Feature: Frequency of C_1.
 Feature: GroupByThenMean of C_3 based on C_1.
 """
 df_output = df_input.copy()

 # Frequency of C_1
 df_output['C_1_freq'] =

df_output['C_1'].map(df_output['C_1'].value_counts())
 # GroupByThenMean of C_3 based on C_1
 df_output['C_3_mean_by_C_1'] =

df_output.groupby('C_1')['C_3'].transform('mean')

 return df_output

(c) LLM-FE (GPT-3.5-Turbo) Output(b) LLM-FE w/o Domain Knowledge (GPT-3.5-Turbo) Output(a) Quantitative Performance

def modify_features(df_input) -> pd.DataFrame:
 """
 Thought: Interaction between normal nucleoli and
 mitoses could capture the proliferative activity
 and potentially enhance the predictive power for
 malignancy.
 Feature: proliferation_activity |
 proliferation_activity = Normal_Nucleoli*Mitoses
 """
 df_output = df_input.copy()
 # Calculate the proliferation activity
 df_output['proliferation_activity'] =
 df_output['Normal_Nucleoli']*df_output['Mitoses']

 return df_output

def modify_features(df_input) -> pd.DataFrame:
 """

 Adding a feature representing the average value of C_0 to
 C_8 as a potential indicator of the overall severity

 """

 df_output = df_input.copy()
 df_output['avg_C'] = df_output[

['C_0', 'C_1', 'C_2', 'C_3',
'C_4', 'C_5', 'C_6', 'C_7', 'C_8']
].mean(axis=1)

 return df_output

Heart Dataset

Breast-W Dataset

Figure 11: Quantitative and Qualitative Analysis on Impact of Domain Knowledge for LLM-FE on Heart
and Breast-W datasets. (a) Comparison of XGBoost performance for LLM-FE against its domain-agnostic
variant and traditional methods, such as OpenFE and AutoFeat, which do not integrate domain knowledge and
exhibit reduced performance. (b) Features generated using the w/o Domain Knowledge variant of LLM-FE.
(c) Feature discovery program generated by LLM-FE. The generated programs emphasize how incorporating
domain expertise leads to more interpretable features that improve model performance.

Figure 11 highlights the qualitative and quantitative benefits of domain-specific feature transforms.
We demonstrate this using two datasets: the Breast-W dataset, which focuses on distinguishing
between benign and malignant tumors, and the Heart dataset, which predicts cardiovascular disease
risk based on patient attributes. These tasks underscore the crucial role of domain knowledge in
identifying meaningful features. Using embedded domain knowledge, LLM-FE not only significantly
improves accuracy but also provides the reasoning for choosing the given feature, leading to more
interpretable feature engineering. For example, in the Heart dataset, LLM-FE suggests the feature
‘Log_Cholesterol’, recognizing cholesterol’s critical role in heart health and applying a logarithmic
transformation to reduce the impact of outliers and stabilize the variance. In contrast, the ‘w/o
Domain Knowledge’ variant arbitrarily combines existing features, leading to uninterpretable
transformations and reduced overall performance (Figure 11(a)). Similarly, for breast cancer
prediction, LLM-FE identifies ‘proliferation_activity’ a biologically relevant metric leading

20

to performance improvement, whereas the absence of domain knowledge results in a simple mean of
all features, lacking interpretability and clinical significance (Figures 11(b) and 11(c)).

D.4 Impact of Evolutionary Refinement

Figure 12 shows the detailed performance trajectory of LLM-FE compared with its ‘w/o Evolutionary
Refinement’ variant on PC1 and Balance-Scale datasets. The graph demonstrates that LLM-FE, using
evolutionary search, consistently improves validation accuracy, while the non-refinement variant
stagnates due to local optima. On the PC1 dataset, the non-refinement variant plateaus after seven
iterations, and on the Balance-Scale dataset, it stagnates after five iterations. LLM-FE’s evolutionary
refinement helps it escape local optima with more robust optimization, leading to better validation
accuracy on both datasets.

0 5 10 15 20
Iterations

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

Ac
cu

ra
cy

Adult

0 5 10 15 20
Iterations

0.895

0.900

0.905

0.910

0.915

0.920

0.925

0.930
Ac

cu
ra

cy
Bank

0 5 10 15 20
Iterations

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Balance-Scale

0 5 10 15 20
Iterations

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Ac
cu

ra
cy

Eucalyptus

0 5 10 15 20
Iterations

0.74

0.75

0.76

0.77

0.78

0.79

0.80

Ac
cu

ra
cy

Blood

0 5 10 15 20
Iterations

0.98

0.99

1.00

1.01

1.02

Ac
cu

ra
cy

Car

0 5 10 15 20
Iterations

0.52

0.53

0.54

0.55

0.56

0.57

Ac
cu

ra
cy

Cmc

0 5 10 15 20
Iterations

0.82

0.83

0.84

0.85

0.86

0.87

Ac
cu

ra
cy

Heart

0 5 10 15 20
Iterations

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

Ac
cu

ra
cy

Credit-g

0 5 10 15 20
Iterations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Junglechess

0 5 10 15 20
Iterations

0.98

0.99

1.00

1.01

1.02

Ac
cu

ra
cy

Tic-tac-toe

0 5 10 15 20
Iterations

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

Pc1

LLM-FE w/o Evolutionary Refinement LLM-FE

Figure 12: Performance Trajectory Analysis. Validation Accuracy progression for LLM-FE w/o evolutionary
refinement and LLM-FE. LLM-FE demonstrates better validation accuracy, highlighting the advantage of
evolutionary iterative refinement.

21

	Introduction
	Related Works
	LLM-FE Approach
	Problem Formulation
	Feature Generation
	Input Prompt
	Feature Sampling

	Data-Driven Evaluation
	Experience Management

	Experimental Setup
	Datasets
	Baselines
	LLM-FE Configuration

	Results and Discussion
	Performance Comparisons
	Generalizability Analysis

	Analysis
	Ablation Study
	Impact of Domain Knowledge and Evolutionary Refinement

	Conclusion
	Dataset Details
	Implementation Details
	Baselines
	LLM-FE

	Additional Results
	Transferability of Generated Features
	LLM-FE and Hyperparameter Optimization (HPO)
	Additional Results
	Robustness to Noise

	Qualitative Analysis
	Computational Efficiency
	Complexity of Generated Features
	Impact of Domain Knowledge
	Impact of Evolutionary Refinement

